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a b s t r a c t

This paper is concerned with the shape reconstruction of a bounded domain with a viscous
incompressible fluid driven by the Oseen equations. For the approximate solution of the ill-
posed and nonlinear problem we propose a regularized Gauss–Newton method. A theoret-
ical foundation for the method is given by establishing the differentiability of the boundary
value problem with respect to the boundary in the sense of the domain derivative. The
results of several numerical experiments show that our theory is useful for practical pur-
pose, and the proposed algorithm is feasible.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the problem of the shape reconstruction for two-dimensional flows governed by the Oseen equa-
tions. This problem arises in aerospace, automotive, hydraulic, ocean, structural and wind engineering. Example applications
include aerodynamic design of automotive vehicles, train, low speed aircraft and hydrodynamic design for ship hulls, turbo-
machinery and offshore structures.

For the shape reconstruction by the domain derivative method, many people have contributed to it. Hettlich solved the
inverse obstacle scattering problem for sound soft and sound hard obstacles [1,2], Kress considered an inverse conduction
scattering problem for shape and impedance in [3]. In [4,5], the three authors dealt with the inverse boundary problem
for the time-dependent heat equation only in the case of perfectly conducting and insulating inclusions. In [6], we solved
a shape reconstruction problem for the heat conduction with mixed condition, and we dealt with the shape reconstruction
of a viscous incompressible fluid driven by the Stokes flow in [7].

This paper consists of three parts. In the remainder of the section we establish the notations that will be used throughout
of the work. Section 2 is devoted to introduce Piola transformation for divergence free condition, and we derive a formulation
for the derivative of the solution with respect to the boundary, which called ‘‘domain derivative’’. This representation is
important, for it is the key to deriving many of the properties of the domain derivative and is required for the numerical
analysis. In Section 3, we apply regularized Gauss–Newton method in solving the inverse problem numerically. The numer-
ical results show that our theoretical work is correct and the method is feasible and effective in practice.
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Before closing this section, we introduce the following functional spaces which will be used throughout this paper, and
they are the standard notations for Sobolev spaces (see [8]):

H1
0ðXÞ :¼ v 2 H1ðXÞ; v joX ¼ 0

n o
;

and

H1
0ðdiv; XÞ :¼ v 2 H1

0ðXÞ;div v ¼ 0 in X
n o

:

2. The domain derivative

Let X be the fluid domain in RN(N = 2 or 3), and the boundary oX :¼ Cs [Cd [C be smooth. The fluid is described by its
velocity y = (y1,y2, . . . ,yn) and pressure p satisfying the Oseen problem:

�mDy þ ðw � rÞy þrp ¼ g in X

div y ¼ 0 in X

y ¼ yd on Cd

y ¼ 0 on Cs [ C;

8>>><
>>>:

ð2:1Þ

where m stands for the kinematic viscosity coefficient, and w : X! RN is a vectorial function such that divw = 0 in X. Let
g 2 L2(X) be a given vector function in X, and yd satisfies:Z

Cd

yd � n ds ¼ 0:

The Eq. (2.1) can be reduced to the homogeneous equations by setting y = u + m (see [9]):

�mDuþ ðw � rÞuþrp ¼ f in X

div u ¼ 0 in X

u ¼ 0 on oX;

8><
>: ð2:2Þ

where f = g + mDm � (w�r)m, and m satisfies:

div m ¼ 0 in X

m ¼ yd on Cd

m ¼ 0 on Cs [ C:

8><
>: ð2:3Þ

We define the bilinear form and the trilinear form as follows:

aðu; vÞ ¼ m
Xn

i;j¼1

Z
X
ðDi ujÞðDi v jÞdx; 8 u; v 2 H1ðXÞ;

bðu;v;wÞ ¼
Xn

i;j¼1

Z
X

uiðDi v jÞwj dx; 8 u; v; w 2 H1ðXÞ:

Continuity of the forms a(�, �) and b(�, �, �) can be demonstrated, these conditions guarantee the existence and uniqueness of a
solution u (see [10,11]).

Taking the scalar product of (2.2) with a function v 2 H1
0ðdiv;XÞ we obtain:

aðu;vÞ þ bðw;u;vÞ ¼ ðf ;vÞ: ð2:4Þ

Let a perturbation of the interior boundary C be specified by

Ch ¼ xþ hðxÞ; x 2 Cf g;

which is a C2 boundary of a perturbed domain Xh, if the vector field h 2 C2(C) is sufficiently small. We choose an extension of
h 2 C2(X) with khkC2ðXÞ 6 ckhkC2ðCÞ; c > 0, which vanishes in the exterior of a neighborhood of C, and define the diffeomor-
phism u(x) = x + h (x) in X. If the inverse function of u is denoted by w, Ju, Jw and Jh are Jacobian matrices.

Let uh 2 H1
0ðdiv; XhÞ be the solution of corresponding boundary value problem:

m
Z

Xh

ruh � rvh dxh þ
Z

Xh

wh � rð Þuh � vh dxh ¼
Z

Xh

f h � vh dxh; ð2:5Þ

for all vh 2 H1
0ðdiv;XhÞ.

It is well known that the divergence free condition coming from the fact that the fluid has an homogeneous density and
evolves as an incompressible flow, and it is very difficult to impose on the mathematical and numerical point of view. Since
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