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a b s t r a c t

In the present paper, a family of predictor–corrector (PC) schemes are developed for the
numerical solution of nonlinear parabolic differential equations. Iterative processes are
avoided by use of the implicit–explicit (IMEX) methods. Moreover, compared to the predic-
tor schemes, the proposed methods usually have superior accuracy and stability properties.
Some confirmation of these are illustrated by using the schemes on the well-known Fish-
er’s equation.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear parabolic problems (e.g., Fisher’s equation, Huxley equation) frequently arise in many scientific areas and in-
trigue lots of researchers in computational implementation and numerical analysis (e.g., [1–12]). For the numerical solution
of the parabolic differential equation:

@u
@t
¼ @

2u
@x2 þ f ðt; x;uÞ; ðx; tÞ 2 ½0;X� � ½0;1Þ;

uðx;0Þ ¼ u0ðxÞ; uð0; tÞ ¼ aðtÞ; uðX; tÞ ¼ bðtÞ;
ð1:1Þ

where t and x denote the time and spatial coordinate, respectively, u0(x), a(t) and b(t) are given specified initial and boundary
conditions, f(t,x,u) is a nonlinear Lipschitz continuous with the conditions to ensure that the nonlinear parabolic equation
(1.1) owns a unique solution, we discretize in space with stepsize h = X/N and approximate the second-order spatial deriv-
ative by the central difference operator:
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@x2 �

uiþ1;j � 2ui;j þ ui�1;j

h2 ;
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where ui,j is a numerical approximation to u(xi, tj). Then, Eq. (1.1) has been converted to an ordinary differential equation
(ODE) in the form of:

du
dt
¼ Auþ gðt;uÞ; uð0Þ ¼ u0ðtÞ: ð1:2Þ

Here
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with its eigenvalues kA
j ¼ 1

h2 ½�2þ 2 cosðjp=NÞ�; j ¼ 1;2; . . . ;N � 1.
Obviously, a chosen small space-size h gives rise to a matrix with a large condition number. This yields an inherently stiff

ODE. In terms of the ODE, the implicit linear multistep and Runge–Kutta methods are favorable schemes for previous inves-
tigators to avoid a small time step-size (see e.g., [12–16]), whereas, these two schemes generate the nonlinear algebraic
equations, a problem needed to be solved by Newton iterative processes. Considering that the update of the Jacobian matrix
at every time step within the Newton iterative process is costly, the two schemes are undesirable to some extent.

In addition, PC schemes are also a family of effective methods, which are successfully applied in the solution for time-
dependent partial differential equations. In [17], Jacques constructed PCm methods corresponding to P(EC)m methods for
parabolic problems. Convergence was achieved with a prescribed number of iterations. Based on split Adams–Moulton for-
mulas, Voss and Casper [18] revealed to us a novel family of PC schemes for stiff ODEs. These schemes owned higher order
and smaller error constant than corresponding split backward differentiation formulas. And a modified Newton iteration
scheme was used at every time step. Later, Voss and Khaliq [19] considered the h-methods in a linearly implicit form as
the predictor. They derived an implicit second-order PC scheme for (1.1). Recently, split-predictor and split-corrector
iterations were introduced by Celnik et al. [20] for stiff problems. Successive over-relaxation was used to prevent divergence
in nonlinear systems for some large step sizes. However, few researchers attempt to find some more accurate PC methods
excluded from the iterative methods in the numerical solution to the stiff ODE (1.2).

Since the ODE (1.2) contains additive terms with different stiffness properties, we can make full use of these features
through the application of special numerical schemes. In the present paper, the adoption of IMEX methods as the predictor
and implicit schemes as the corrector generates our PC algorithm. Meantime, iterative methods become dispensable when a
transformation of the discrete approximation is given. Moreover, our PC method possesses extraordinary accuracy and wider
stability regions than the previously mentioned IMEX algorithm. And all the obtained theoretical results are confirmed by
numerical tests on a fisher’s equation.

The rest of paper is structured as follows. In Section 2, we derive classes of IMEX PC schemes for Eq. (1.2). Section 3 is
devoted to discuss the stability properties of the methods. In Section 4, with some numerical tests, we confirm the methods’
effectiveness and the obtained theoretical results. Finally, conclusions and discussions for this paper are summarized in
Section 5.

2. Predictor–corrector schemes

The strategy we adopt for the predictor is IMEX schemes, which were first introduced for time dependent partial differ-
ential equations by Ascher et al. in [21]. Let k be the discretized time stepsize and un denote the approximation solution at
tn = kn. Applying s-step IMEX scheme to (1.2) gives:

Xs

j¼0

ajunþj ¼ k
Xs

j¼0

bjAunþj þ k
Xs�1

j¼0

cjgðtnþj;unþjÞ; ð2:1Þ

where bs – 0.
We take a transformation for (2.1) in our actual computation. This yields our following PC methods:
the predictor:

ðasI � bskAÞ~unþs ¼
Xs�1

j¼0

�ajunþj þ kbjAunþj þ kcjgðtnþj;unþjÞ
� �

; ð2:2Þ

the corrector:

ðasI � bskAÞunþs ¼
Xs�1

j¼0

�ajunþj þ kbjAunþj þ kbjgðtnþj;unþjÞ
� �

þ kbsgðtnþs; ~unþsÞ: ð2:3Þ
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