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a b s t r a c t

The limitations of the classic work of Lanchester on non-spatial ordinary differential equa-
tions for modelling combat are well known. We present work seeking to more realistically
represent troop dynamics and to enable a deeper understanding of the nature of conflict.
We extend Lanchesters ODEs, constructing a new physically meaningful system of partial
differential equations. Spatial force movement and troop interaction components are rep-
resented with both local and non-local terms, expanding upon the swarming behaviour of
fish and birds proposed by Mogilner et al. We are able to reproduce crucial behaviour such
as the emergence of cohesive density profiles and troop regrouping after suffering losses in
both one and two dimensions.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.

1. Introduction

Continuous time approaches to combat modelling have not received a great deal of attention or development since the
seminal research of Lanchester [1] in 1914 when he developed the equations:

Square Law for Collective combat:

du
dt
¼ �kuvðtÞ; uð0Þ ¼ u0; ku > 0; ð1Þ

dv
dt
¼ �kvuðtÞ; vð0Þ ¼ v0; kv > 0: ð2Þ

Linear Law for Individual combat:

du
dt
¼ �kvuvðtÞuðtÞ; uð0Þ ¼ u0; kvu > 0; ð3Þ

dv
dt
¼ �kuvuðtÞvðtÞ; vð0Þ ¼ v0; kuv > 0: ð4Þ

Lanchester modelled force dynamics as two forces u = u(t) and v = v(t) with initial sizes u0 and v0, respectively. The con-
stants a and b are known as Lanchester attrition-rate coefficients and the addition of the opposing force’s density converts the
Collective or Square Law equations (1) and (2) into the Individual or Linear Law equations (3) and (4). His set of ordinary
differential equations have greatly influenced military decision making for many years and permeate military thought
and analysis to this day. However, the underlying Command and Control structure implied by these equations is that all
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individuals have perfect knowledge of the enemy, systematically killing opponents until a winner is determined either by
total annihilation or when force numbers reach a predetermined level. That is, despite variations in communications, weap-
on lethality, terrain effects, location in the domain, etc., individual soldiers are deemed to have equal capabilities and affect
each other equally. While perhaps applicable to ancient and outdated forms of warfare, this underlying assumption must be
addressed if these equations are to be applied to modern warfare that relies heavily on discrepancies of terrain, communi-
cations, sensors, weapon and soldier capabilities. Many military researchers recognise this limitation and are seeking to de-
rive more realistic representations to enable a deeper understanding of the nature of conflict, see for example [2–4].

Progress has been made by Protopopescu et al. [5,6], Rusu [7] and Jaiswal and Nagabhushana [8], addressing some of the
major criticisms of the ODEs and reflecting the development in numerical techniques and computational ability of the 1980s
and 1990s. Spatial and temporal variation and local and non-local firing effects were successfully modelled using standard
Method of Lines and Finite Difference techniques, and a suite of basic military manoeuvres demonstrated. Frontal attack,
turning manoeuvres, envelopment, infiltration [7], reserve deployment and termination decision rules have been imple-
mented. However, troop formation was an artefact of initial profiles chosen; that is, a formation initially set as a bivariate
Gaussian remained roughly as such as all scenario results published were stopped after a brief period of force interaction.
Furthermore, spatially dependent velocity fields resulted in unacceptable numerical losses, restricting the velocity field to
a temporally dependent one. More complex velocity fields or other numerical techniques such as Finite Volume Methods
have not been investigated. Recent work by Spradlin and Spradlin focused on variations of the firing terms while using either
stationary forces or simple velocity terms [9].

The rise of agent-based or cellular-automaton models has received much attention in many disciplines, especially defence
related research. Models such as Einstein [10], ISAAC [11], Map Aware Non-uniform Automata (MANA) [12] demonstrate a
range of behaviour which appears to hint at some form of underlying structure. Each individual troop is modelled via a rule
set relating to quantifiable capabilities such as fire-power, communications and also intangibles such as morale or desire to
remain close to friendly forces. These rules encode the non-linearities necessary for a more realistic description of warfare.
These non-linearities need to be understood in order to develop specialised tactics based on current capability, or enhance
the procurement of future capability. We believe that the rapidly developing spatially and temporally discrete approach
would be greatly assisted by the corresponding development of the continuous spatial and temporal approach. Indeed, Ila-
chinski [4], who has been instrumental in the development of ISAAC, stresses the need for research into nonlinear continuous
dynamics, exploitation of analogous biological models and phase-space reconstruction techniques. Lauren compares MANA
simulation results with fluid dynamic concepts or transition between laminar and turbulent states and maintenance of force
profiles to viscosity [13]. If an appropriate suite of equations can be found and analysed, this may eliminate the need for
extensive parametric studies and subsequent data mining in order to find those combinations of parameters that produce
behaviour of interest in CA or agent-based models. Continuous models can be more transparent in terms of how parameter
changes affect outcomes and thus more understandable.

2. Existing PDE models

Protopopescu et al. [5,6] extended the ODE formalism of the original Lanchester equations to partial differential equations
in order to address a major criticism from the military modelling community: the inability to model the movement of forces
throughout a domain or battlespace. An example of one such manoeuvre is a classic flanking movement where the main
body of a force will advance directly towards the enemy while a subsection will covertly move around to the flank the enemy
for a surprise attack. Avoidance of obstacles such as mountains or unnavigable terrain is also a key feature in modern war-
fare. Modern warfare has moved away from the traditional attritional form conducted in large open areas to smaller forces
operating in difficult terrain such as the urban environment with definite spatial restrictions. A new form of warfare,
manoeuvre warfare, relies on the principle of inflicting a disproportionate amount of damage to the enemy’s weak points.

Protopopescu et al. consider equations of the following form over the domain R2. Let u ¼ uðx; y; tÞ; v ¼ vðx; y; tÞ :

R2 � R! R represent the positive soldier densities of two opposing forces at a given position and time. Let the kernels
kuðx; y; tÞ; kv ðx; y; tÞ : R2 � R! R represent non-local interaction between the two forces over some finite domain R

@u
@t
¼ r � ðDuruÞ þ r � ðCuuÞ þ uðau þ buuþ ku � vÞ þ duv þ eu; ð5Þ

@v
@t
¼ r � ðDvrvÞ þ r � ðCvvÞ þ vðav þ bvv þ kv � uÞ þ dvuþ ev ; ð6Þ

where

ðku � vÞðx; tÞ ¼
Z

R
kuðx� X; tÞv jðX; tÞ@X:

Taking (5) as an example, the physical interpretation of the individual terms are as follows. The first term represents diffu-
sion of the force u. As the soldiers of force u move throughout the battlespace, they will tend to wander or move away
slightly with respect to their fellow soldiers, such that the entire force distribution may diffuse over time. As maintaining
formation is a critical requisite of a force’s overall capability to, for example, respond to threats or move effectively to a
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