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a b s t r a c t

In this article, we report an efficient high order numerical method based on cubic spline
approximation and application of alternating group explicit method for the solution of
two point non-linear boundary value problems, whose forcing functions are in integral
form, on a non-uniform mesh. The proposed method is applicable when the internal grid
points of solution interval are odd in number. The proposed cubic spline method is also
applicable to integro-differential equations having singularities. Computational results
are given to demonstrate the utility of the method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

During last four decades, there has been growing interest in developing and using highly accurate numerical methods
based on cubic spline approximations for the solution of non-linear differential equations (see [1–5]). Albasiny and Hoskins
[6,7] have obtained spline solutions by solving a set of equations with a tridiagonal matrix of coefficients. Bickley [8] has
considered the use of cubic spline for solving linear two point boundary value problem. Fyfe [9] has discussed the application
of deferred corrections to the method suggested by Bickley, by considering linear boundary value problem. In 1983, Jain and
Aziz [10] have derived both second and fourth order cubic spline methods using uniform mesh for the numerical solution of
two point non-linear boundary value problem. Later in 1984, Jain et al. [11] have discussed the highly accurate variable mesh
methods for the numerical solution of two point singular perturbation problems. In the recent past, many authors (see
[12–17]) have suggested various numerical methods based on cubic spline approximations for the solution of linear singular
two point boundary value problem. Further recently, Mohanty et al. [18,19] have derived highly accurate cubic spline
methods and discussed the application of alternating group explicit (AGE) methods for the solution of two point non-linear
boundary value problems.

Now, we consider the non-linear differential equation with forcing function in integral form:

u00 ¼ /ðx;u;u0Þ þ
Z 1

0
Kðx; sÞds; 0 < x; s < 1: ð1Þ
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The two point Dirichlet type boundary conditions are given by:

uð0Þ ¼ a0; uð1Þ ¼ a1; ð2Þ

where a0, a1 are finite constants. We assume that K(x, s) is a real valued function of both variables in the range 0 6 x, s 6 1.
Let

IðxÞ ¼
Z 1

0
Kðx; sÞds and /ðx;u; u0Þ þ IðxÞ ¼ wðx;u;u0Þ:

Then we may re-write (1) as

u00 ¼ wðx;u;u0Þ; 0 < x < 1: ð3Þ

For 0 < x < 1 and �1 < u, v <1 (where u0 = v), we assume that

(i) w(x,u,v) is continuous,
(ii) @w

@u and @w
@v exist and continuous,

(iii) @w
@u > 0 and @w

@v

�� �� 6 L, where L is a constant.

These conditions assure us the existence and uniqueness of the above boundary value problem (see Keller [20]). In addi-
tion, we assume that u(x) 2 C6[0,1] and K(x,s) 2 C4[0,1].

To the authors knowledge, no third order variable mesh method based on cubic spline approximations for the solution of
integro-differential Eq. (1) has been discussed in the literature so far. In this paper, using three variable mesh points we have
discussed an efficient third order method based on cubic spline approximations for the solution of non-linear integro-
differential Eq. (1) and the application of TAGE and Newton-TAGE iterative methods proposed by Evans [21,22]. In next
section, we give mathematical derivation of the method in details. In Section 3, we discuss the application of TAGE and New-
ton-TAGE iterative methods for the solution of linear and non-linear integro-differential equation. In Section 4, we compare
the computational results obtained by using the proposed iterative methods based on cubic spline approximations with the
corresponding successive over relaxation (SOR) and Newton-SOR iterative methods (see [23–27]). Concluding remarks are
given in Section 5.

2. Mathematical derivation of the method

We discretize the solution region [0,1] with the non-uniform mesh such that 0 = x0 < x1 < � � � < xN+1 = 1. Our method con-
sists of three grid points xk, xk+1 and xk�1, where xk � xk�1 = hk and xk+1 � xk = hk+1. Grid points are given by xi ¼ x0þPi

k¼1hk; i ¼ 1;2; . . . ;N þ 1. The mesh ratio is rk = hk+1/hk. When rk = 1, then it reduces to the constant mesh case. Let the ex-
act solution of u(x) at the grid point xk be denoted by Uk = u(xk) and uk be the approximate value of Uk.

Throughout our discussion, we consider N as odd, i.e. our solution region contains odd number of internal grid point. Let
us construct a numerical method for evaluating the integral

R 1
0 GðxÞdx.

Let
Z xkþ1

xk�1

GðxÞdx ¼ b�1Gk�1 þ b0Gk þ b1Gkþ1; ð4Þ

where b�1, b0, b1 are parameters to be determined and at the grid point xk, we denote Gk = G(xk).
Further, we may write

Gk�1 ¼ Gk � hkG0k þ
h2

k

2
G00k �

h3
k

6
G000k þ � � � ; ð5aÞ

Gkþ1 ¼ Gk þ hkþ1G0k þ
h2

kþ1

2
G00k þ

h3
kþ1

6
G000k þ � � � ; ð5bÞ

Z xkþ1

xk�1

GðxÞdx ¼ ðhk þ hkþ1ÞGk þ
h2

kþ1 � h2
k

2
G0k þ

h3
kþ1 þ h3

k

6
G00k þ

h4
kþ1 � h4

k

24
G000k þ � � � ð5cÞ

By the help of (5a)–(5c), comparing both sides of (4), we get

b0 þ b1 þ b�1 ¼ hk þ hkþ1; ð6aÞ

b1hkþ1 � b�1hk ¼
h2

kþ1 � h2
k

2
; ð6bÞ

b1h2
kþ1 þ b�1h2

k ¼
h3

kþ1 þ h3
k

3
: ð6cÞ
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