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a b s t r a c t

We have studied the effect of advection on reaction–diffusion equations by using toroidal
velocity fields. Turing patterns formation in diffusion–advection–reaction problems was
studied specifically, considering the Schnackenberg and glycolysis reaction kinetics mod-
els. Four cases were analyzed and solved numerically using finite elements. For glycolysis
models, the advective effect modified the form of Turing patterns obtained with diffusion–
reaction; whereas for Schnackenberg problems, the original patterns distorted themselves
slightly, making them rotate in direction of the velocity field. We have also determined that
the advective effect surpassed the diffusive one for high values of velocity and instability
driven by diffusion was eliminated. On the other hand the advective effect is not consider-
able for very low values in the velocity field, and there was no modification in the original
Turing pattern.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.

1. Introduction

Many physical problems can be modeled by balancing of three phenomena: diffusion, advection and reaction [1]. The first
is defined as the dispersion of the species involved in the process through physical dominion of the problem. Advection is
related to species transport due to the presence of velocity fields. Reaction is an interaction process in which involved species
are generated or consumed. The advection–diffusion–reaction equation includes these terms, as expressed in (1) for a phe-
nomenon with one species problem [1]:

@u
@t
¼ r � ðKruÞ þ a � ruþ f ðuÞ; ð1Þ

where u is the concentration, a is the associated velocity of the advective phenomena, K is the diffusion matrix and f(u) is the
reaction function. This equation has been used for problems in fields as fluid dynamics [2], heat transfer [3–5], semiconduc-
tor physics [6], engineering materials [7], chemistry [8], biology [9–12], population dynamics [13–15], astrophysics [16], bio-
medical engineering [17–19] and financial mathematics.

A particular case, driven by reaction and diffusion phenomenon, is characterized by the presence of space stable distri-
butions of concentration species, commonly known as patterns. Turing [20] defined the conditions in which reactive phe-
nomena at equilibrium cannot be stabilized by the presence of a diffusive term, forming spatial heterogeneous patterns
known as instabilities driven by diffusion or Turing instabilities.
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Turing [20], Madzvamuse [11,12,17,21–26] and Garzón-Alvarado [1] have proposed numerical simulations considering
growing dominion conditions and particular geometries modifying distribution patterns. Their articles have a two species
reaction–diffusion system in common as defined in (2b)

@u
@t
¼ r2uþ cf ðu; vÞ; ð2aÞ

@v
@t
¼ dr2v þ cgðu;vÞ ð2bÞ

which will present spacial instability in the concentration patterns (of species u and v) if (2b) satisfies the next inequations
(3d) [20,21,27]

fugv � fvgu > 0; ð3aÞ
fu þ gv < 0; ð3bÞ
dfu þ gv < 0; ð3cÞ
ðdfu þ gvÞ

2
> 4dðfugv � fvguÞ; ð3dÞ

where fi and gi indicate the derivates of the reaction functions regarding concentration variables (for example fu ¼ @f
@u). In

expressions (2b) and (3d), d ¼ Du

Dv is the relationship between these species diffusion coefficients, while c is a dimension coef-
ficient associated with reactive processes f and g.

In his seminal work, Turing found pattern formation in several physical and chemical processes. The present authors have
been studying another biological situations like animal skin pattern formation [10–12,28–31], bone, tissue and tumor for-
mation [17–19,32], animal population distribution [13,14], in recent papers.

Different numerical techniques for solution of the reaction–diffusion problem have thus been implemented, like finite
differences [29,30,33,34], finite elements [11,22–25,32] and spectral elements [35]. Many initial studies on Turing pattern
formation have been devoted to work on fixed meshes. However, the growing nature of reaction–diffusion problems (in a
biological context) have led to studies on growing meshes. For example, Madzvamuse [11] has studied the incidence of mesh
growth in diffusion pattern formation. In a seminal work, Madzvamuse [11] presented an algorithm for 2D diffusion–
reaction problem solution using a continuously growing Eulerian dominion. For example, [23] introduced a mesh growing
finite element technique application for biological problems. In 2007, Madzvamuse [26] presented the effect of a structured
growth mesh on Turing pattern formation using a Lagrangian approach analyzing two specific techniques: an implicit finite
difference method and finite elements with second order semi-implicit time discretization (2-SBDF). The latter work com-
plemented to [36] where results from the 2-SBDF technique were compared to a finite element implementation that line-
arized the reaction terms. It should be pointed out that in the previously mentioned references, where a mesh growth
effect was included, an advective term was used within the differential equation. However, the role of this transport phe-
nomenon is not quite clear because the Lagrangian approach eliminates this term from the differential equation.

Here, we focus on Turing pattern formation without mesh growth, including advective terms with toroidal velocity fields.
A numerical solution of the reaction–advection–diffusion equation was implemented using finite elements, with Backward-
Euler temporal discretization. The results showed the influence of convective terms on pattern type and the relationship be-
tween advective term magnitude and the appearance or not of diffusion instability. Five study cases are presented, three of
them include Schnackenberg reaction terms while the other two were analyzed using a glucolysis reaction model. The re-
sults illustrate that glucolysis reaction models are much sensitive to advective field presence, since the resulting Turing pat-
tern is alter for small velocity values. Schnackenberg reaction models showed that Turing pattern changes were proportional
to toroidal velocity field magnitude.

2. Materials and methods

2.1. Finite element method solution of the reaction–advection–diffusion equation

Here, we will focus on the study of reaction–advection–diffusion equations in 2D (4):
@u
@t
þ a � ru�r � ðDruÞ � fðuÞ ¼ 0; ð4Þ

where u = [u,v]T is the species concentration vector, a = [ax,ay]T is the velocity vector associated with transport term, while
f(u) = [f(u,v),g(u,v)]T is the reaction vector.

Applying weighted residue method to expression (4) on the 2D-domain X for variable u, we can obtain (5):Z
X

w
@u
@t
þ a � ru�r � ðDruÞ � fðuÞ

� �
dX ¼ 0; ð5Þ

where w is the weighting function. Now, working on each term separately and integrating by parts, Eq. (6) is obtained:Z
X

w
@u
@t

� �
dXþ

Z
X

wða � ruÞdXþ
Z

X
ðrw � DruÞdX�

Z
X

wðfðuÞÞdX�
Z

C
ðwðDruÞ � nÞdC ¼ 0; ð6Þ
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