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Abstract

The convergence of iterative based domain decomposition methods is linked with the absorbing boundary conditions
defined on the interface between the sub-domains. For linear elasticity problems, the optimal absorbing boundary condi-
tions are associated with non-local Dirichlet-to-Neumann maps. Most of the methods to approximate these non-local
maps are based on a continuous analysis. In this paper, an original algebraic technique based on the computation of local
Dirichlet-to-Neumann maps is investigated. Numerical experiments are presented for linear elasticity problems with
extreme contrasts in the coefficients.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Domain decomposition methods with Lagrange multipliers have been shown to be very efficient for the par-
allel solution of large scale problems [1–4]. These methods are based on the partitioning of the global domain
into non-overlapping sub-domains. The continuity is enforced by using additional (one or two) Lagrange mul-
tipliers [5] across the interfaces between the sub-domains. Additional augmented matrices defined on the inter-
face are used in order to avoid possible non-well-posed sub-problems [6–8]. The definition of theses augmented
matrices is linked with the absorbing boundary conditions defined on the interface between the sub-domains
[9,10]. It can be shown that using some absorbing boundary conditions involving a non-local Dirichlet-to-
Neumann (DtN) map of the outside of each sub-domain, leads to the optimal convergence of the iterative
domain decomposition algorithm based on two Lagrange multipliers [11,12]. Several approaches have been
investigated to define efficient local approximation of this DtN map. These approximations can be classified
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into two major classes. The first class consists of continuous approximations of the continuous DtN operator
with Fourier analysis tools [13–17]. The second class consists of discrete approximations of the discrete DtN
operator with algebraic techniques [18,12,19]. In this paper, an original technique is introduced. This tech-
nique consists to define several local DtN maps and to assembly these local DtN maps in order obtain an effi-
cient and robust approximation of the non-local DtN map.

This paper is organized as follows: Section 2 introduces the equations of linear elasticity and the linear sys-
tem of equations considered. Section 3 presents the domain decomposition method with two Lagrange mul-
tipliers and two augmented matrices defined on the interface between the sub-domains. The non-local
Dirichlet-to-Neumann map involved for the optimal convergence of this domain decomposition method is
then briefly reminded. Section 4 introduces an original technique to approximate this non-local Dirichlet-
to-Neumann map. The analogy of this original technique with a finite element method is then discussed.
An asymptotic analysis of this technique is presented in Section 5, followed by numerical experiments applied
to linear elasticity problems with extreme contrasts in the coefficients. Finally, Section 6 contains the conclu-
sions of this paper.

2. Mathematical formulation

Here, the equations of linear elasticity are considered. Let an elastic body which occupies in the absence of
force the set X 2 R3 with a regular boundary oX. Let ui (x, t) denotes the displacement at position x (x 2 R3).
The symmetric strain tensor (Green tensor) �ij is defined by

�ij ¼
1

2
ðoxj ui þ oxi uj þ oxi ukoxj ukÞ.

Assuming small displacements oxi uj � 1 and small strain oxi ui � 1, the linear expression of the strain tensor
reduces to

�ij ¼
1

2
ðoxj ui þ oxi ujÞ.

In the case of an hyper-elastic body, the strain and stress tensor are linked together with the relationship:

rij ¼ gð�klÞ.

In the following analysis, the case of a linear body is considered which means that the stress tensor is propor-
tional to the strain tensor:

rij ¼ Cijkl �kl.

Finally, in the case of an isotropic body the Hooke law gives

rij ¼ k �kkdij þ 2l �ij;

where

k ¼ Em
ð1þ mÞð1� 2mÞ and l ¼ E

2ð1þ mÞ ;

denote the Lamé coefficients, E the Young modulus and m the Poisson ratio. With these notations, applying the
Hamilton principle to the continuous system of equations and assuming small displacements, the system of
equations of linear elasticity can be obtained:

�ðkþ lÞrðdivðuÞÞ � lDu ¼ f ; ð2:1Þ
where f denotes the right-hand side. The variational formulation of this system of equations gives find
u 2 H1(X) such as "v 2 H1(X)

aðu; vÞ ¼ lðvÞ;
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