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a b s t r a c t

This article is concerned with a delayed Lotka–Volterra two-species prey–predator diffu-
sion system with a single discrete delay and homogeneous Dirichlet boundary conditions.
By applying the implicit function theorem, the asymptotic expressions of positive equilib-
rium solutions are obtained. And then, the asymptotic stability of positive equilibrium
solutions is investigated by linearizing the system at the positive equilibrium solutions
and analyzing the associated eigenvalue problem. It is demonstrated that the positive equi-
librium solutions are asymptotically stable when the delay is less than a certain critical
value and unstable when the delay is greater than this critical value. In addition, it is also
found that the system under consideration can undergo a Hopf bifurcation when the delay
crosses through a sequence of critical values. Finally, to verify our theoretical predictions,
some numerical simulations are also included.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, population models appearing in various fields of mathematical biology have been proposed and studied
extensively. For example, when there are only a prey species and a predator species in a certain ecological community, under
the assumptions that the growth of prey species will be governed by the logistic equation in the absence of predator species
and the predator will tend to excitation when there are no prey species, Lotka [1] and Volterra [2] proposed the the following
well-known Lotka–Volterra two-species prey–predator system

du
dt ¼ uðtÞ r � uðtÞ

K

h i
� buðtÞvðtÞ;

dv
dt ¼ vðtÞ½�Dþ cuðtÞ�;

8<: ð1:1Þ

where uðtÞ and vðtÞ represent the densities of prey and predator at time t, respectively; the positive constant r and K denote
the intrinsic growth rate and carrying capacity of prey species, respectively; b > 0 is the predation coefficient of predator;
D > 0 denotes the death rate of predator and c > 0 is the transformation rate of prey to predator.

In fact, there are probably many prey species in an ecological community and the predator species can still survive in the
absence of some of prey species. Therefore, if we consider only one of prey species and assume the growth of predator is still
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governed by the logistic equation in the absence of this prey species, then in this case the two-species prey–predator system
can be described by the following Lotka–Volterra system of ordinary differential equations (ODEs)

du
dt ¼ uðtÞ r1 � a11uðtÞ � a12vðtÞ½ �;
dv
dt ¼ vðtÞ½r2 þ a21uðtÞ � a22vðtÞ�;

(
ð1:2Þ

where the positive constants r1 and r2 denote the intrinsic growth rates of prey and predator, respectively, and aijði; j ¼ 1;2Þ
are all positive constants.

In proposing system (1.2), it is assumed that prey and predator species are spatially homogeneous and the future states of
system are determined only by the current ones. In general, the species is spatially heterohomogeneous and hence individ-
uals will tend to migrate towards regions of lower population density to add the possibility of survival [3]. Meanwhile, most
of species need take proper time to become maturity and also need appropriate gestation period to reproduce [4–6,3]. Thus, a
more realistic model reflecting the growth dynamics of prey–predator two species should be described by the following de-
layed Lotka–Volterra prey–predator diffusion system

@uðt;xÞ
@t ¼ d1Duðt; xÞ þ uðt; xÞ½r1 � a11uðt � s11; xÞ � a12vðt � s12; xÞ�;

@vðt;xÞ
@t ¼ d2Dvðt; xÞ þ vðt; xÞ½r2 þ a21uðt � s21; xÞ � a22vðt � s22; xÞ�;

(
t > 0; x 2 X; ð1:3Þ

where D is Laplace operator and X � Rn is a bounded open domain with smooth boundary @X; positive constants d1 and d2

denote the diffusion coefficients of prey and predator, respectively; s11 and s22 represent the gestation period of prey and
predator species, respectively; s12 is the growth time for a predator larva to posses the predation ability and s21 is the growth
time for a prey larva to become esculent.

System (1.3) with Neumann boundary conditions has been investigated extensively by many researchers (see, for exam-
ple, [7–9] and the references cited therein). For example, Kuang and Smith [7,8] investigated the global stability of the de-
layed Lotka–Volterra system with Neumann boundary conditions. Recently, under the assumptions that sij ¼ sði; j ¼ 1;2Þ, by
regarding the delay s as the bifurcation parameter, Yan [9] investigated the stability of positive constant equilibrium solu-
tions and Hopf bifurcations of nonconstant periodic solutions arisen from the increase of delay for system (1.3) with homo-
geneous Neumann boundary conditions. It is shown that the positive constant equilibrium solutions are asymptotically
stable when s is less than a certain critical value and unstable when s is greater than this critical value, and system (1.3)
can undergo a Hopf bifurcation when s crosses through a sequence of critical values. In addition, by using the normal form
theory and center manifold reduction for partial functional differential equations (PFDEs), the direction of Hopf bifurcation
and the stability of bifurcated periodic solutions occurring through Hopf bifurcations are also investigated.

When the environment is surrounded by a totally unfavorable region in which the population density cannot attain po-
sitive values, the homogeneous Dirichlet boundary and initial value conditions

uðt; xÞ ¼ vðt; xÞ ¼ 0; x 2 @X; t P 0;
uðt; xÞ ¼ /ðt; xÞ; vðt; xÞ ¼ wðt; xÞ; ðt; xÞ 2 ½�s;0� �X

�
ð1:4Þ

should be imposed on system (1.3), where

/;w 2 C ¼ C½�s;0�; H1
0ðXÞ and s ¼ max

16i;j62
fsijg:

As pointed out by Huang [10], it is more difficult to handle the Dirichlet boundary conditions because in this case the non-
trivial equilibrium solutions or nontrivial periodic solutions (if they exist) are spatially heterohomogeneous. Meanwhile, it is
also very complicated and almost impossible to analyze completely the effects of delays on the dynamical behaviors of sys-
tems with multiple different delays. In view of these difficulty, we firstly observe the effects of delays on the dynamical
behaviors of system (1.3) and (1.4) by the numerical methods for partial differential equations. To this end, let X ¼ ð0;pÞ
in system (1.3) and (1.4), and consider the following system:

@uðt;xÞ
@t ¼ 0:1 @2uðt;xÞ

@x2 þ uðt; xÞ½0:2� 0:1uðt � s11; xÞ � 0:2vðt � s12; xÞ�;

@vðt;xÞ
@t ¼ 0:2 @2vðt;xÞ

@x2 þ vðt; xÞ½0:3þ 0:2uðt � s21; xÞ � 0:3vðt � s22; xÞ�;
t > 0; 0 < x < p;

uðt; xÞ ¼ vðt; xÞ ¼ 0; x ¼ 0;p; t P 0;
uðt; xÞ ¼ vðt; xÞ ¼ 0:1 1þ t

s

� �
sin x; ðt; xÞ 2 ½�s;0� � ½0;p�:

8>>>>>>>>><>>>>>>>>>:
ð1:5Þ

The numerical simulations show that system (1.5) without delays has a stable positive equilibrium solution (see Fig. 1);
when s11 ¼ 0:21; s12 ¼ 0:15; s13 ¼ 0:17 and s22 ¼ 0:32, the positive equilibrium solution is still stable (see Fig. 2); when
s11 ¼ 8; s12 ¼ 5; s13 ¼ 7 and s22 ¼ 13, the positive equilibrium solution is unstable and there is an oscillation near the posi-
tive equilibrium solution (see Fig. 3).

As the special case of system (1.3) and (1.4), we see that sufficiently small delays in system (1.5) preserve the stability of
the positive equilibrium solutions and large delays destabilize the positive equilibrium solution, cause oscillation. It is
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