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a b s t r a c t

We consider the extended linear complementarity problem (XLCP), of which the linear and
horizontal linear complementarity problems are two special cases. We reformulate the
XLCP to a smooth equation by using some smoothing functions and propose a Leven-
berg–Marquardt method to solve the system of smooth equation. The global convergence
and local superlinear convergence rate are established under certain conditions. Numerical
tests show the effectiveness of the proposed algorithm.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The extended linear complementarity problem (XLCP) introduced by Mangasarian and Pang [1], is to find a pair of vectors
x and y in Rn such that

Mx� Ny 2 P; x P 0; y P 0; hx; yi ¼ 0; ð1Þ

where M and N are two real matrices of order m� n, P is a polyhedral set in Rm and h�; �i denotes the usual inner product.
Throughout this paper, we assume that the feasible set of XLCP is nonempty

fðx; yÞjMx� Ny 2 P; x P 0; y P 0g–;:

This problem arises in engineering, equilibrium modelling and optimization problems, and is a unifying framework of var-
ious linear complementarity problems, such as the linear complementarity problems (LCP), see [30] the horizontal linear
complementarity problem (HLCP) and the mixed linear complementarity problem (MLCP), see [2].

Over the past decades, many equivalent reformulation forms of the XLCP have been proposed by some researchers. For
example, Mangasarian and Pang [1] and Gowda [3] considered the equivalent relationship between XLCP and the following
bilinear program (BLP):

minhx; yi s:t: Mx� Ny 2 P; x P 0; y P 0: ð2Þ
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Andreani and Martinez [4] and Solodov [5] considered reformulating the XLCP as an unconstrained or a nonnegative con-
strained optimization problem.

The motivation for our study comes from recent smoothing methods for complementarity, variational inequality and
mathematical programming problems, see, for example [6–11,25]. Especially, the smoothing methods have been proved
to be succeed in solving complementarity problems include the HLCP [12] and VLCP [13] in recent years. However, as we
observe, there is few smoothing method available for the XLCP given by (1).

The aim of this paper is to propose a smoothing Levenberg–Marquardt method for XLCP. By using the minimum function
and the Fischer–Burmeister function, we first reformulate the XLCP as a system of nonsmooth equations, and using the
smoothing technique we construct the smooth operator. A smoothing Levenberg–Marquardt method is proposed to solve
the system of smooth equations. Under certain conditions, we obtain the global and local convergence properties of the pro-
posed algorithm.

This paper is organized as follows: in Section 2, we give the equivalent reformulation of the XLCP. The algorithm and glo-
bal convergence is given in Section 3. The local superlinear convergence is proved in Section 4. In Section 5, we report our
numerical tests to show the effectiveness of our algorithm. The conclusion is presented in Section 6.

Throughout this paper, we assume the polyhedral set P in Rm appearing in the statement of XLCP (1) is presented as

P ¼ fu 2 RmjAu P hg;

where A is some k�m real matrix and h 2 Rk.

2. Equivalent smoothing reformulation of the XLCP

In this section, we give the equivalent smoothing reformulation of the XLCP and discuss some associated properties of the
reformulation. Firstly, we introduce the NCP function and the smoothing function. A function u : R2 ! R is called a NCP func-
tion if it possesses the following property:

uða; bÞ ¼ 0() a P 0; b P 0; ab ¼ 0:

Two well-known NCP functions are the minimum function and the Fischer–Burmeister function [14], which are defined
as follows:

uFBða; bÞ ¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
;

uminða; bÞ ¼ aþ b� ja� bj:

Accordingly, the smoothing functions associated with uFB and umin are [6,15]:

uFBða; b; sÞ ¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ 2s2

q
;

uminða; b; sÞ ¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ 4s2

q
:

Now we will consider the equivalent reformulation of XLCP given by (1). Based on the discussion in [5], we reformulate (1)
into the following equivalent system of nonlinear equation:

Uðx; y; zÞ :¼
UFBðx; yÞ

AMx� ANy� b� z
Uminðz; 0Þ

0B@
1CA ¼ 0; ð3Þ

where UFBðx; yÞ ¼ ðuFBðx1; y1Þ;uFBðx2; y2Þ; � � � ;uFBðxn; ynÞÞ
T 2 Rn and Uminðz;0Þ ¼ ðuminðz1;0Þ;uminðz2;0Þ; . . . ;uminðzm;0ÞÞT 2 Rn.

By using the smoothing function, we define the smooth approximation of U as Us : Rn � Rn � Rm ! Rn � Rm � Rm

Usðx; y; zÞ :¼
UFBðx; y; sÞ

AMx� ANy� b� z

Uminðz;0; sÞ

0B@
1CA ð4Þ

For convenience, we rewrite w ¼ ðxT ; yT ; zTÞT , and accordingly we denote UðwÞ ¼ Uðx; y; zÞ; UsðwÞ ¼ Usðx; y; zÞ, further-
more, we denote the corresponding merit function by

WðwÞ ¼ 1
2
kUðwÞk2

and

WsðwÞ ¼
1
2
kUsðwÞk2

:

Then the XLCP is equivalent to the following minimization problem:

min WðwÞ ð5Þ

with object function value zero.
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