

AIPIDILIIEID MATTIFEMATTICAIL MODIEILIING

Applied Mathematical Modelling 33 (2009) 1366-1385

www.elsevier.com/locate/apm

CFD-based optimization of fuel injection strategies in a diesel engine using an adaptive gradient method

Franz X. Tanner a,*, Seshasai Srinivasan b

a Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive,
209 Fisher Hall, Houghton, MI 49931-1295, USA
b Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA

Received 4 April 2007; received in revised form 28 January 2008; accepted 30 January 2008 Available online 8 February 2008

Abstract

A computationally efficient computational fluid dynamics (CFD)-based optimization method with the capability of finding optimal engine operating conditions with respect to emissions and fuel consumption has been developed. The approach taken uses a steepest descent method for an adaptive cost function, where the line search is performed with a backtracking algorithm. The backtracking algorithm utilizes quadratic and cubic polynomials to accelerate the convergence, and the initial backtracking step employs an adaptive step size mechanism which depends on the steepness of the search direction. The adaptive cost function is based on the penalty method such that the penalty term is stiffened after every line search. The engine simulations are performed with a *KIVA-3*-based CFD code which is equipped with well-established spray, combustion and emission models. The application of this optimization tool is demonstrated for a non-road, medium-speed DI diesel engine which, for these simulations, utilizes a multi-orifice, asynchronous injection system. It has been demonstrated that this new injection method has a large potential for reducing emissions while maintaining a low fuel consumption. In addition, this optimization approach is computationally very efficient when good enough initial values are available.

© 2008 Elsevier Inc. All rights reserved.

Keywords: CFD simulations; Engine optimization; Adaptive gradient method; Asynchronous injection

1. Introduction

One of the main driving forces in today's engine research is the reduction of pollutants while keeping the fuel consumption as low as possible. A widely used method which addresses such issues is to investigate the flow, spray and combustion processes inside the cylinder and to develop strategies which will minimize the pollutants at their source. This approach is particularly suited for diesel engines where emission after-treatments are technically challenging and expensive. Over the years, methods of computational fluid dynamics

^{*} Corresponding author. Tel.: +1 906 487 2190; fax: +1 906 487 3133. E-mail address: tanner@mtu.edu (F.X. Tanner).

Nomenclature CA crank angles **CFD** computational fluid dynamics **EPA** Environmental Protection Agency exhaust valve opening **EVO** GA genetic algorithm IVC inlet valve closure NO_{x} nitric oxide particualte mass PM revolutions per minute RPM top dead center TDC SFC specific fuel consumption grad spatial gradient micro genetic algorithm μGA C, N, S cost function weights penalty matrix, diffusivity D Ftotal cost function evaluations P power output Lpower losses Ttemperature X normalized parameter space cost function exponents c, n, s $\mathrm{d}V$ volume differential cost, merit or penalty function f unconstraint objective function f_0 constraint function g # cost function in kth line search l_k m dimension of parameter space n pressure p*i*th parameter component p_i kth search direction p_k normalized parameter χ β backtracking constant derivative in direction p_{k} δ_k backtracking constant λ density ρ ζ penalty parameter **Subscripts** g k iteration index 1 liquid 0 target value

(CFD) have evolved into a reliable and economic tool which is now routinely used in the development of new or improved engine designs. While CFD methods are an expedient way to investigate a particular engine operating condition, they can become computationally very demanding when used in the context of engine optimization, where hundreds of such operating points may have to be evaluated. Therefore, engine optimization

Download English Version:

https://daneshyari.com/en/article/1707016

Download Persian Version:

https://daneshyari.com/article/1707016

<u>Daneshyari.com</u>