
On the selection of the most adequate radial basis function

Humberto Rocha *
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Abstract

Radial basis function (RBF) methods can provide excellent interpolants for a large number of poorly distributed data
points. For any finite data set in any Euclidean space, one can construct an interpolation of the data by using RBFs. How-
ever, RBF interpolant trends between and beyond the data points depend on the RBF used and may exhibit undesirable
trends using some RBFs while the trends may be desirable using other RBFs. The fact that a certain RBF is commonly
used for the class of problems at hand, previous good behavior in that (or other) class of problems, and bibliography, are
just some of the many valid reasons given to justify a priori selection of RBF. Even assuming that the justified choice of the
RBF is most likely the correct choice, one should nonetheless confirm numerically that, in fact, the most adequate RBF for
the problem at hand is the RBF chosen a priori. The main goal of this paper is to alert the analyst as to the danger of a
priori selection of RBF and to present a strategy to numerically choose the most adequate RBF that better captures the
trends of the given data set. The wing weight data fitting problem is used to illustrate the benefits of an adequate choice of
RBF for each given data set.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Radial basis function (RBF) methods can provide excellent interpolants for high dimensional data sets of
poorly distributed data points (scarce and unevenly distributed points). For any finite data set in any Euclid-
ean space, one can construct an interpolation of the data by using RBFs, even if the data points are unevenly
and sporadically distributed in a high dimensional Euclidean space. There is a wide range of applications
where RBF interpolation methods can be successfully applied, such as aeronautics, meteorology and medical
imaging (see [1–5]). However, RBF interpolant trends between and beyond the data points depend on the RBF
used and may exhibit undesirable trends using some RBFs while the trends may be desirable using other
RBFs.

The fact that a certain RBF is commonly used for the class of problems at hand, previous good behavior in
that (or other) class of problems, and bibliography, are just some of the many valid reasons given to justify a
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priori selection of RBF. Even assuming that the justified choice of the RBF is most likely the correct choice,
i.e., that the RBF picked is the most adequate and the one that produces the ‘‘best” model, one should none-
theless confirm numerically that, in fact, the most adequate RBF for the problem at hand is the RBF chosen a
priori.

The main goal of this paper is to alert the analyst as to the danger of a priori choice of RBF and to present a
strategy to numerically choose the most adequate RBF that better captures the trends of the given data set.
The wing weight data fitting problem is used to illustrate the benefits of an adequate choice of RBF for each
given data set.

The paper is organized as follows. Section 2 gives a brief description of RBF interpolation problems. Sec-
tion 3 introduces cross-validation for model parameter tuning. In Section 4, wing weight data fitting is used to
illustrate the benefits of an adequate choice of RBF for each given data set. Section 5 includes the concluding
remarks.

2. RBF interpolation problems

Let f ðxÞ be a real-valued function of the input vector x defined on a subset X of Rn such that the value of f

at N input vectors xj, j ¼ 1; . . . ;N , f ðxjÞ, is given. The goal is to construct an estimation model gðxÞ such that
gðxjÞ ¼ f ðxjÞ for j ¼ 1; . . . ;N . The interpolation requirement can be satisfied by RBF interpolation.

Interpolation functions generated from a RBF uðtÞ can be represented in the following form:

gðxÞ ¼
XN

j¼1

ajuðkx� xjkÞ; ð1Þ

where jjx� xjjj denotes the parameterized distance between x and xj defined as

jjx� xjjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

jhijðxi � xj
iÞ

2

s
;

and h1; . . . ; hn are scalars (see [1]).
The most popular examples of RBF [6–8] are cubic spline uðtÞ ¼ t3, thin plate spline uðtÞ ¼ t2 ln t, multi-

quadric uðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

, and Gaussian uðtÞ ¼ expð�t2Þ (see Fig. 1). These RBFs can be used to model cubic,
almost quadratic, and linear growth rates, as well as exponential decay, of the response for trend predictions.
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Fig. 1. Graphs of commonly used radial basis functions.
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