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Abstract

The preservation of the qualitative properties of physical phenomena in numerical models of these phenomena is an
important requirement in scientific computations. In this paper, the numerical solutions of a one-dimensional linear par-
abolic problem are analysed. The problem can be considered as a altitudinal part of a split air pollution transport model or
a heat conduction equation with a linear source term. The paper is focussed on the so-called sign-stability property, which
reflects the fact that the number of the spatial sign changes of the solution does not grow in time. We give sufficient con-
ditions that guarantee the sign-stability both for the finite difference and the finite element methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The concentration of r air-pollutants can be modelled and forecasted by the so-called air pollution trans-
port model (e.g., [1]), which has the form

ovl

ot
¼ �rðuvlÞ þ rðkrvlÞ þ Rl þ E þ rvl ðl ¼ 1; . . . ; rÞ: ð1Þ

Here the unknown function vl = vl(x,y,z, t) is the concentration of the lth pollutant, the function u = u(x,
y,z, t) describes the wind velocity, k = k(x,y,z, t) is the diffusion coefficient, Rl = Rl(x,y,z, t,v1, . . . ,vl) describes
the chemical reactions between the investigated pollutants, E = E(x,y,z, t) is the emission function and
r = r(x,y,z, t) describes the deposition process.

Because of its complexity, system (1) is generally solved applying the so-called operator splitting technique.
The system is split into several subproblems according to the physical and chemical processes involved in
the model: advection, diffusion, chemical reaction, emission and deposition. These subproblems are solved
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cyclically with some appropriate methods (e.g., [2,3]). Then, the solution of the model can be obtained using
the solutions of the subproblems. Splitting, however, can be applied not only according to the physical or
chemical processes but according to the space coordinates, too. In this case, for instance, the longitudinal
and latitudinal space coordinates are handled separately from the altitudinal coordinate.

Naturally, the properties of the solution of an air pollution transport model are determined by the prop-
erties of the numerical methods that are applied for the subproblems. In order to get a qualitatively correct
numerical solution of the whole model, the subproblems must be solved with qualitatively adequate numerical
methods, too.

In this paper, we consider the one-dimensional problem

ov
ot
� o

ox
j

ov
ox

� �
þ cv ¼ 0; ðx; tÞ 2 ð0; 1Þ � ð0;1Þ; ð2Þ

vðx; 0Þ ¼ v0ðxÞ; x 2 ð0; 1Þ; ð3Þ
vð0; tÞ ¼ vð1; tÞ ¼ 0; t P 0; ð4Þ

where v0 is a given continuous initial function, the continuous function c : ½0; 1� ! R possesses the property

0 < cmin 6 cðxÞ 6 cmax;

the function j : ½0; 1� ! R fulfills the property

0 < jmin 6 jðxÞ 6 jmax

and it has continuous first derivatives. A function v : ½0; 1� � Rþ0 ! R is called the solution of problem (2)–(4)
if it is sufficiently smooth and satisfies equalities (2)–(4). Eq. (2) can be considered as one of the subproblems of
an air pollution transport model, namely the one that describes the altitudinal changes. Eq. (2) is also suitable
to describe heat conduction processes. In this case v denotes the temperature, j is the heat conduction coef-
ficient and �cv is a linear source term.

The investigation of the number of the sign changes of real functions goes back as far as to 1836 [4]. Then in
the thirties, Pólya [5] showed for the case c = 0, j = 1 that the number of the sign-changes of the function
x # v(x, t) (x 2 [0, 1]) does not grow in t. This property is called sign-stability.

A number of qualitative properties of Eq. (2), such as nonnegativity preservation, maximum–minimum
principle, maximum norm contractivity, etc, are thoroughly investigated in the literature both for finite differ-
ence and finite element methods [6–10]. This is not the case for the sign-stability property. There are sufficient
conditions given for the finite difference solution of (2), but for the finite element method there are no results
available.

It was shown in [11] that if the relation

s

h2
6

1

4ð1� hÞ ð5Þ

is satisfied then the finite difference method with the uniform spatial step-size h and with the h time-discreti-
zation method with the time-step s is sign-stable for problems where c = 0 and j = 1. If h = 1, then there is no
upper bound for the quotient s/h2. In [12], we showed that condition (5) is the necessary and sufficient con-
dition of the uniform (independent of h) sign-stability, and we extended the investigation to finite element solu-
tions. In [13], a sufficient condition of the sign-stability is given for the explicit finite difference solution of a
semi-linear parabolic problem. The proof is based on a six-page-long linear algebraic consideration about the
sign-stability of positive tridiagonal matrices. Paper [9] simplifies the proof essentially and gives sufficient con-
ditions of the sign-stability of the finite difference methods applied for (2).

2. Sign-stability of tridiagonal matrices

Let n be a fixed natural number. In order to simplify the notations, we introduce the sets N = {1, . . . ,n},
Ji = {i � 1, i, i + 1} (i = 2, . . . ,n � 1), J1 = {1,2} and Jn = {n � 1,n}. The elements of a matrix A 2 Rn�n are
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