

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Chimie

www.sciencedirect.com

Full paper/Mémoire

Catalyst-free synthesis of functionalized dihydro-2-oxypyrroles by the reaction of enaminones and N,N'-bis(phenylmethylidene) phenylmethane

Abdolali Alizadeh^{a,*}, Javad Mokhtari^a, Long-Guan Zhu^b

^a Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran ^b Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China

ARTICLE INFO

Article history: Received 12 October 2012 Accepted after revision 30 January 2013 Available online 6 March 2013

Keywords: Primary amine Dialkyl acetylenedicarboxylate N,N'bis(phenylmethylidene)phenylmethane Dihydro-2-oxypyrrole Three-component reaction

1. Introduction

Substituted pyrrole derivatives are very important heterocycles. Many biologically active compounds, potent pharmaceuticals, and natural products contain the pyrrole structural motif [1]. Among the pyrrole derivatives, dihydro-2-oxoypyrroles show such versatility and they are important substructures in a variety of pharmacy, including products active against viral infections (HIV [2,3], influenza [4] cytomegalovirus [5]), anticancer agents [6] and products active against microbiological diseases [7–9] (bacterial or fungal). Furthermore, dihydro-2-oxoypyrrole derivatives have been used as PI-091 [10], which is a novel platelet aggregation inhibitor, and EBPC, which is a highly specific aldose reductase inhibitor [11], as shown in Fig. 1. Besides, the well-known 5-alkyl-2-oxopyrroles [12],

ABSTRACT

A catalyst-free and convenient approach for the preparation of substituted dihydro-2-oxypyrrole is described. This three-component reaction between primary amines, dialkyl acetylenedicarboxylate, and *N*,*N'*-bis(phenylmethylidene)phenylmethane proceeds in MeOH under reflux conditions in good to excellent yields.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

first described in 1890 by Emery [13], relatively little attention was given toward 5-aryl-2-oxopyrrole derivatives in the open literature.

As part of our continuing effort into design of new routes for the preparation of biologically active compounds using *N*,*N'*-bis(phenylmethylidene)phenylmethane and application of this reagent in the synthesis of numerous organic compounds, especially aza-cyclic compounds [14], herein, we describe a simple, one-pot, three-component synthesis of 5-phenyl-2-oxopyrrole derivatives **3** by the three-component reaction of *N*,*N'*-bis(phenylmethylidene)phenylmethane, primary amines **1** and dialkyl acetylenedicarboxylate **2** (Scheme 1).

2. Results and discussion

Firstly, an easily available starting material *N*,*N*'-bis (phenylmethylidene)phenylmethane was reacted with benzylamine **1a** and diethyl acetylenedicarboxylate **2a** in MeOH under refluxing temperature for 6 h. The 5-phenyl-2-oxopyrrole **3a** was successfully obtained in 85%

^{*} Corresponding author.

E-mail addresses: aalizadeh@modares.ac.ir, abdol_alizad@yahoo.com (A. Alizadeh).

^{1631-0748/\$ –} see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crci.2013.01.020

Fig. 1. Biologically active compounds having dihydro-2-oxypyrrole unit.

Scheme 1. Synthesis of 5-phenyl-2-oxopyrrole derivatives.

yield (Scheme 1). Different types of amines, such as benzyl and aliphatic amines were used to investigate the scope and limitation of the reaction.

A variety of benzylamines with substitutents Me, Cl at *para* position and aliphatic amines, such as propyl- and isobutylamine, were examined with DMAD and *N*,*N'*-bis(phenylmethylidene)phenylmethane under the same conditions and the corresponding dihydro-2-oxypyrrole derivatives **3a**–**i** were obtained in good yields as shown in Table 1.

Dialkyl acetylenedicarboxylate also showed very high reactivity in this reaction under the same conditions. All new compounds **3a–i** were fully characterized on the basis of elemental analysis, IR, ¹H NMR, ¹³C NMR and mass spectra. The structure of product **3h** was further confirmed by X-ray crystallographic analysis (Fig. 2). The mass spectrum of **3a** displayed the molecular ion peak at the appropriate *m/z* value. The IR spectrum of compound **3a** showed two absorption bands due to the NH stretching

Table 1

5-Phenyl-2-oxopyrrole derivatives were prepared by the mentioned reaction.

Entry	Product	R	R′	Time (h)	Yield (%)
1	3a	Bn	Et	6	85
2	3b	4-Cl-Bn	Me	6	81
3	3c	4-Cl-Bn	Et	7	74
4	3d	4-Me-Bn	Me	5	77
5	3e	4-Me-Bn	Et	6	82
6	3f	Propyl	Me	6	74
7	3g	Propyl	Et	5	75
8	3h	Isobutyl	Me	5	80
9	3i	Isobutyl	Et	5	79

Fig. 2. X-ray crystal structure of compound 3h.

frequency at 3338 and 3192 cm⁻¹, respectively. Absorption bands at 1705 and 1666 cm⁻¹ are due to the COOEt and CONH groups, respectively. The ¹H NMR spectrum of **3a** showed a triplet for the CH₃ group (δ = 1.02 ppm, ³J_{HH} = 7.1 Hz), three singlets for the two NH and CH groups

Scheme 2. Probing the mechanism for the formation of title compounds.

Download English Version:

https://daneshyari.com/en/article/170723

Download Persian Version:

https://daneshyari.com/article/170723

Daneshyari.com