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Abstract

A shape optimization problem concerned with thermal deformation of elastic bodies is considered. In this article, mea-
sure theory approach in function space is derived, resulting in an effective algorithm for the discretized optimization prob-
lem. First the problem is expressed as an optimal control problem governed by variational forms on a fixed domain. Then
by using an embedding method, the class of admissible shapes is replaced by a class of positive Borel measures. The opti-
mization problem in measure space is then approximated by a linear programming problem. The optimal measure repre-
senting optimal shape is approximated by the solution of this finite-dimensional linear programming problem. Numerical
examples are also given.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In many industrial applications, there is interest in control of the thermal deformation of an isotopic and
homogeneous solid body subjected to a prescribed thermal treatment. Due to temperature changes, the body
undergoes a thermoelastic deformation, that is, the induced thermal stress force the body to change its shape
in time. As the final shape depends on the initial shape, one may be interested in finding the initial shape of the
body such that its final shape after thermal treatment resembles a desired prescribed form as closely as pos-
sible. This problem may be expressed as an optimal shape design (OSD) problem.

A two-dimensional problem of this type was treated in [1] by transforming the system of equations onto a
fixed domain. Another approach to solve this problem was given in [2], where the underlying domain was
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discretized to handle the system of thermoelasticity by a finite element technique and to establish a descent
method to determine the optimal shape.

In this article, we follow the procedure presented in [2] to convert the OSD problem to an optimal control
problem. Then to each admissible control-state, a linear continuous functional is associated. Correspondence
between continuous positive linear functionals and positive Borel measures leads to an optimization problem
in measure space. The transformed problem in measure space is an appropriate formulation of the OSD
problem since it is a linear programming (LP) problem in measure space. The solution of this LP problem
is then approximated by the solution of a finite-dimensional LP problem which is attractive for consistent
numerical computations. The sub-optimal shape will be found from the solution of the corresponding LP
problem.

In comparison with other numerical methods for OSD problems, the proposed method in this article has
some aspects. Gradient based methods [3,4] are restricted to differentiable cost functions but the proposed
method may handles non-differentiable cost functions. Computation of the solution that uses finite element
method (see [2,5]) is a time consuming task but presented method in this article is not iterative and therefore,
it is self-starting and dose not need any initial solution. Methods described in [2,4] that use control-state

Nomenclature

t time variable
T final time
x = (x1,x2) geometry coordinates before transformation
n = (n1,n2) geometry coordinates after transformation
s(x1) unknown initial shape of the upper boundary
s, �s upper and lower bound for s(x1), respectively
s0 upper bound for absolute value of s 0(x1)
C1, C2 fixed parts of the body shape
C3(s) moving part (upper boundary)of the body shape
X(s) the shape of the body before transformation
X the shape of the body after transformation
ŝðx1Þ desired shape for upper boundary at final time t = T

Uad the set of admissible shapes
h(t,x) temperature before transformation
H(t,n) temperature after transformation
h0(x) initial temperature at t = 0
hs(x) temperature of the surrounding medium at the upper boundary
q mass density
c specific heat
j conductivity
as convective heat transfer coefficient
sij components of stress tensors
eij components of linearized strain tensors
u(t,x) displacement vector
u(x) displacement vector at t = T

u1(t,x) horizontal component of displacement vector
u2(t,x) vertical component of displacement vector
E Young’s modulus
m0 Poisson’s ratio
ael coefficient of linear thermal expansion
F body force
l0, k0 Lamé coefficients
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