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a b s t r a c t

We consider the parabolic–elliptic chemotaxis-growth system
ut = ∆u− χ∇ · (um∇v) + µu(1− uα), x ∈ Ω, t > 0,
−∆v + v = uγ , x ∈ Ω, t > 0,

under no-flux boundary conditions in a smoothly bounded domain Ω ⊂ RN , N ≥ 1,
where χ, µ,m, α and γ are prescribed positive parameters fulfillingm ≥ 1 and γ ≥ 1.

Recently, it has been proved in Galakhov et al. (2016) that if either α > m+γ−1
or α = m + γ − 1 and µ > Nα−2

2(m−1)+Nαχ, for any given u0 ∈ W 1,∞(Ω) this
system possesses a global and bounded classical solution. The present work further
shows that the same conclusion still holds for the critical case α = m + γ − 1 and
µ = Nα−2

2(m−1)+Nαχ.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis, known as a biased movement of cells along the concentration gradient of a cue, plays a
central role in colorful biological processes such as pattern formation, bacteria aggregation, angiogenesis and
cancer invasion. The celebrated chemotaxis model was initially proposed by Keller and Segel in 1970 [1], and
it has been comprehensively investigated in past four decades (see [2], for instance). Motivated by various
biological phenomena, numerous variants of the Keller–Segel model have been developed [2]. Among them,
some recent works qualitatively study the effects of interplay between self-diffusion and cross-diffusion [3,4],
between self-diffusion and logistic damping [5], or between nonlinear signal production and logistic growth [6]
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on the properties of solutions to the corresponding modified models. In order to address the dependence of
dynamical behaviors of solutions on the interactions between nonlinear cross-diffusion, generalized logistic
source and superlinear signal production, Galakhov et al. [7] recently considered the initial–boundary value
problem 

ut = ∆u− χ∇ · (um∇v) + µu(1− uα), x ∈ Ω , t > 0,
−∆v + v = uγ , x ∈ Ω , t > 0,
∂u

∂ν
= ∂v
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

in a smoothly bounded domain Ω ⊂ RN , N ≥ 1, where χ, µ,m, α and γ are given positive parameters.
For the prototype case m = α = γ = 1, it is shown that if µ > (N−2)+

N χ, then for any given initial data
u0 with suitable regularity the system admits a global and bounded solution [8]. As for the critical case
µ = N−2

N , N ≥ 3, the global existence of classical solution was also asserted in [9]; however we should point
out that the possibility of infinite-time blow-up of solutions for this critical case is not ruled out in [9]. For
the general case m ≥ 1 and γ ≥ 1, it has been shown that if either α > m + γ − 1 or α = m + γ − 1 and
µ > Nα−2

2(m−1)+Nαχ, for any given u0 ∈ W 1,∞(Ω) the system (1.1) possesses a global and bounded classical
solution [7].

Inspired by the above-mentioned latter two recent works [7,9], the present work focuses on the analysis
of (1.1) for the critical case α = m + γ − 1 and µ = Nα−2

2(m−1)+Nαχ with N ≥ 3. Our result not only claims
the global existence of solutions but also excludes the possibility of infinite-time explosion. More precisely,
we have:

Theorem 1.1. Let Ω ⊂ RN , N ≥ 3, be a bounded domain with smooth boundary, suppose that χ, µ,m, α and
γ are given positive parameters fulfilling

m ≥ 1 and γ ≥ 1, (1.2)

and assume that

α = m+ γ − 1 and µ = Nα− 2
2(m− 1) +Nαχ. (1.3)

Then for any given nonnegative u0 ∈ W 1,∞(Ω) the problem (1.1) possesses a global classical solution (u, v)
which is bounded in Ω × (0,∞) in the sense that there exists C > 0 satisfying

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) ≤ C for all t > 0. (1.4)

Finally, we make a comparison between our method and the argument in [7]. In order to establish a bound
for

Ω
up(·, t), t ∈ (0, Tmax), the standard entropy-like inequality is derived (see Lemma 2.3). The term

Ω
up+α on the rightmost of (2.3) is controllable in the sub-critical case (see Lemma 2.3 in [7] for details);

however, it is uncontrollable in the critical case. Making full use of the negativity of the coefficient A(p)
before


Ω
up+α whenever p is smaller than some p1 and employing the smallness of A(p) when p > p1 but

close to p1, we derive a bound for

Ω
up1+δ(·, t), t ∈ (0, Tmax), with some small δ > 0 via a bootstrap

argument (see Lemmata 2.4–2.6). Relying on this, we further invoke the bootstrap argument once again to
raise the Lp-integrality of u (see Lemma 2.7) and thereby complete the proof of our main claim.

2. Proof of the main result

We begin with the local existence and the extensibility criterion (cf. [10,8], for instance).
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