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a b s t r a c t

By using critical point theory, we obtain some sufficient conditions on the existence
of homoclinic solutions of a class of non-periodic discrete φ-Laplacian equations.
In our paper, the nonlinearities can be mixed super p-linear with asymptotically
p-linear at ∞ for p ≥ 1, and be mixed superlinear with asymptotically linear at 0.
To the best of our knowledge, there is no such result for the existence of homoclinic
solutions in non-periodic discrete φ-Laplacian equations before. Some results in the
literature are improved.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past years, the discrete nonlinear Schrödinger (DNLS) equation, which is a nonlinear lattice
system that appears in many areas of physics, received great attention. Discrete solitons which exist in the
DNLS systems also arouse much interest, for example, photorefractive media [1], biomolecular chains [2] and
Bose–Einstein condensates [3]. The experimental observations of discrete solitons in nonlinear lattice systems
have been reported in [4]. Many authors have studied the existence of discrete solitons of the DNLS equations.
To mention a few, see [5–8]. And many methods are used, for example, the principle of anticontinuity [5],
variational methods [6], centre manifold reduction [7] and the Nehari manifold approach [8].

Consider the discrete solitons of the following DNLS equation with attractive self-interaction:

iψ̇n = −∆ψn + vnψn − γngn(ψn), n ∈ Z, (1.1)
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where ∆ψn = ψn+1 + ψn−1 − 2ψn is the discrete Laplacian in one spatial dimension, the given sequence
{vn}n∈Z is assumed to be positive, γ = {γn}n∈Z is a positive real valued sequence, and gn(u) is a nonlinear
function in u for each n ∈ Z. The function gn for each n ∈ Z is said to be super (p−1)-linear or asymptotically
(p− 1)-linear at ∞ for some p ≥ 2 if

lim
|u|→∞

gn(u)
|u|p−2u

=∞ or lim
|u|→∞

gn(u)
|u|p−2u

= an <∞,

respectively. Typical representatives of nonlinearity are

gn(u) = cn|u|p−2u, cn ̸= 0, p > 2, (1.2)

and

gn(u) = ln
|u|q+p−2u

1 + |u|q , ln ̸= 0, q > 0, p ≥ 2.

Considering (1.1), assume the nonlinearity is gauge invariant, i.e.,

gn(eiθu) = eiθgn(u), θ ∈ R,

and, in addition, gn(u) ≥ 0 for u ≥ 0.
By the discrete soliton Ansatz, we change the discrete solitons for (1.1) to a stationary problem:

ψn = une
−iωt and lim

|n|→∞
ψn = 0,

where {un}n∈Z is a real valued sequence and ω ∈ R is the temporal frequency. Then (1.1) becomes

−∆un + vnun − ωun = γngn(un), n ∈ Z, (1.3)

and

lim
|n|→∞

un = 0 (1.4)

holds.
Assume that gn(0) = 0 for each n ∈ Z, then {un}n∈Z = {0} is a solution of (1.3), which is called the

trivial solution. As usual, we say that a solution u = {un}n∈Z of (1.3) is homoclinic (to 0) if (1.4) holds.
In addition, if {un}n∈Z ̸= {0}, then u is called a nontrivial homoclinic solution. Clearly, discrete solitons of
(1.1) correspond to the homoclinic solutions of (1.3). We point out that the existence of homoclinic solutions
of (1.3) has been studied in [9,10].

Actually, in this paper, we will study the existence of the nontrivial homoclinic solutions of the following
nonlinear discrete φ-Laplacian equation:

−△(φ(△un−1)) + ωnun = γngn(un), n ∈ Z, (1.5)

where △un = un+1 − un, φ(u) is continuous in u with φ(0) = 0, and Ω = {ωn}n∈Z is a positive real valued
sequence. Obviously, (1.3) is a special form of (1.5) with φ(u) = u and ωn = vn − ω for each n ∈ Z.

The aims of this paper read as follows. First, (1.3) was considered by us in [10] when gn for each n ∈ Z is
superlinear at both∞ and 0, which plays an important role in the existence of homoclinic solutions of (1.3).
In our previous work [11], we considered homoclinic solutions in periodic difference equations with mixed
nonlinearities. In this paper, the nonlinearities can be mixed super p-linear with asymptotically p-linear at
∞ for p ≥ 1, and be mixed superlinear with asymptotically linear at 0. To the best of our knowledge, there is
no such result for (1.5) with mixed nonlinearities. In addition, the nonlinearity like (1.2) satisfies gn(u)

|u| being
nondecreasing with respect to |u| for each n ∈ Z. In this paper, the monotonicity of gn(u)

|u| has been replaced
by a more general condition. Besides, there have been some interests [12–14] in the existence of periodic
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