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a b s t r a c t

We obtain an analytic solution of a monodimensional stationary system coupling
a simplified thermohydraulic model to a simplified neutronic model based on
the diffusion approximation with one energy group. We obtain this solution with
minimal hypotheses on the absorption and fission cross sections, and on the diffusion
coefficient.
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1. Introduction

In this Note, we construct an analytic solution of the low Mach number thermohydraulic model
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h = EΣf (h)φ(t, z) (c)

(1)
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coupled to the simplified neutronic model based on the diffusion approximation with one energy group

− d

dz


D(h) d

dz
φ(z)


+

Σa(h)− νΣf (h)

keff


φ(z) = 0. (2)

In (1) and (2), z ∈ [0, L] is the spatial variable, L > 0 being the length of the nuclear core. Moreover, in (1),
ρ(z), u(z), π(z) and h(z) are respectively the density, the velocity, the dynamical pressure and the internal
enthalpy of the flow. The source term ρg is a volumic force (e.g. the gravity field). The constant E is the
energy released by a fission (E > 0 is in Joule), Σf (h) is the fission (macroscopic) cross section (Σf (h) > 0
is in m−1) and φ(z) – solution of (2) – is the scalar neutron flux (φ(z) ≥ 0 is in m−2 s−1). In (2), D(h) is
the diffusion coefficient (D(h) > 0 is in m), Σa(h) is the absorption (macroscopic) cross section (Σa(h) > 0
is in m−1) and ν is the average number of neutron produced by a fission. Moreover, the density ρ and the
internal enthalpy h are linked through the equation of state ρ = ϱ(h) where ϱ(·) is a given function.1 At
last, keff > 0 is the neutron multiplication factor: keff ∈]0, 1[, keff = 1 and keff > 1 means that the nuclear
core is respectively subcritical, critical and supercritical.
Using (1), we obtain ρu = De where De > 0 is a positive constant defining the flow rate. Thus, (1)(c) and
(2) give the simplified thermohydraulics–neutronics system
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We supplement this system, written for φ ∈ H1
0 ([0, L]) (which means that φ satisfies homogeneous Dirichlet

boundary conditions φ(0) = φ(L) = 0)2 and h ∈ C1([0, L]), with the constraint φ ≥ 0 on [0, L] and with the
boundary conditions

h(0) = he and h(L) = hs. (4)

Let us note that knowing h(z), the density ρ(z) is given by ρ(z) = ϱ[h(z)]. This allows to obtain the velocity
u(z) with u(z) = De

ρ(z) . At last, the dynamical pressure π(z) is obtained by integrating (1)(b) and by using the
boundary condition π(L) = π∗ where π∗ is the pressure at the outlet of the nuclear core. In [2], we construct
an analytical solution of (3) (4) when D(h) and Σf (h) are positive constants, Σa(h) being a non-constant
function of h (to enforce the coupling). In this Note, we generalize this result by supposing that D(h) and
νΣf (h) are also functions depending on h.

The outline of this Note is the following. In Section 2, we construct an analytical solution of (3) (4). In
Section 3, we underline the link between (3) (4) and an eigenvalue problem. Then, we conclude the Note.

2. Construction of an analytical solution

To construct an analytical solution of (3) (4), we assume that the given functions Σf (h), Σa(h) and D(h)
verify the two following hypotheses:

Hypothesis 1. The enthalpy always belongs to a fixed domain [hmin, hmax] on which Σf (h), Σa(h) and D(h)
are continuous functions.

Hypothesis 2. There exist αf > 0, αa > 0 and αd > 0 such that in [hmin, hmax]

Σf (h) ≥ αf , Σa(h) ≥ αa and D(h) ≥ αd. (5)

1 The fact that the equation of state ϱ(h) depends only on h is a consequence of the low Mach regime [1].
2 This is the natural set-up for this second order elliptic equation, which is thus written in the weak sense.
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