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a b s t r a c t

Recently, Venturino and Petrovskii proposed a general predator–prey model with
group defense for prey species (Venturino and Petrovskii, 2013). The local dynamics
had been studied and showed that the model might undergo Hopf bifurcation,
and have an extinction domain. In this paper, we dedicate ourselves to the
investigation of the global dynamics of the model by establishing the conditions of
the nonexistence of periodic orbits, and the existence and uniqueness of limit cycles.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The rate of change of prey attacked, in population dynamics, is generally described by the so-called func-
tional response of the predator to the prey [1]. By the mass action principle and assuming that both predator
and prey are of spatially homogeneous distribution, we can obtain the traditional functional response, which
is based on the original L–V model and still remained as the basis of theory for predator–prey problems
[2].

For the inhomogeneous situation, Venturino and Petrovskii [3] recently proposed a functional response in
terms of the α power of prey, where α ∈ (0, 1) reflecting group defense for prey species. More precisely, they
investigated the following model:
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dG(τ)

dτ = r


1− G(τ)

K


G(τ)− aG(τ)αF (τ),

dF (τ)
dτ = −mF (τ) + aeG(τ)αF (τ),

(1.1)

with all parameters are positive and functions G(τ) and F (τ) denote respectively the densities of prey
and predator species at time τ . r is the growth rate of prey species, K is its carrying capacity, m is the
mortality rate of predator species, a is the search efficiency of predator for prey, e is the biomass conversion
coefficient, and α represents a kind of aggregation efficiency. Then the local dynamics was studied, such
as Hopf bifurcation and existence of extinction domain. Two special defense mechanisms have also been
considered by other researchers, such as in Ref. [4], Braza considered a special predator–prey system, in
which the prey population exhibits herd behavior in order to provide a self-defense from predators while the
predator population shows individualistic behavior, and modeled the functional response in terms of the 1/2
power of prey. The author uncovered that the model can experience Hopf bifurcation for some parameters,
and some singularity occurs for the solution behavior near the trivial equilibrium. In Ref. [5], Chattopadhyay
and his coauthors considered two toxin-producing phytoplankton–zooplankton systems in which a fraction
of the phytoplankton aggregates to form some roughly spherical patches, and the poison will leak into the
surrounding water through the surface of the patch. They modeled the poisoning function in terms of the
2/3 power of phytoplankton, and obtained that the dynamics of the plankton population depends on the
fraction of the phytoplankton population that aggregates to form patches. We refer readers to Refs. [6–10]
as some other related works on predator–prey model with herd behavior.

It is worth pointing out that, in all of these studies, authors only investigated local dynamics such
as stability of equilibria; the global dynamics, however, was missing. In the present paper, we will devote
ourselves to the investigation of the global dynamics of model (1.1). We will first perform some basic analysis
for model (1.1), including the singularity analysis of the solution near the origin equilibrium, the stability
analysis of the non-trial equilibria and the existence of Hopf bifurcations, which can be considered as the
natural extensions of the results known in Refs. [3–5]. Then the conditions under which model (1.1) has no
periodic orbits, and has exactly one limit cycle will be established. Based on these results, we can obtain the
global dynamics of model (1.1) as follows: there exists a separatrix in the positive invariant set R2

+ such that
the orbit with initial value above the separatrix terminates at positive vertical axis after which decreases
to zero along the vertical axis, and the orbit starting with a point below the separatrix converges to the
corresponding attractor.

The rest of this paper is organized as follows. Some preliminary results of model (1.1) are discussed in
Section 2. The conditions of the nonexistence of periodic orbits, and the existence and uniqueness of limit
cycles are respectively established in Sections 3 and 4. We then present the global dynamics of model (1.1)
in Section 5. Finally, we conclude the paper by a short discussion.

2. Some preliminary results

First, we introduce transformations

x = 1
K
G, y = a

rK1−αF, t = rτ, c = aeKα

r
, s = m

r

to reduce the number of parameters and to simplify the original model (1.1). After some straightforward
calculation and manipulation we then reach a non-dimensional model

dx
dt = x(1− x)− xαy,
dy
dt = cxαy − sy.

(2.1)
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