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a b s t r a c t

The main purpose of this paper is to revisit the proximal point algorithms
with over-relaxed A-maximal m-relaxed monotone mappings for solving variational
inclusions in Hilbert spaces without Lipschitz continuity requirement to overcome
the drawbacks of the paper (Verma, 2009) [5]. We affirmatively answer the open
question mentioned in the paper (Huang and Noor, 2012) [6].

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a real Hilbert space with the norm ∥ · ∥ and the inner product ⟨·, ·⟩. We hope to solve the
following general class of nonlinear variational inclusion problems: to find a solution to

0 ∈M(x), (1)

where M : X → 2X is a set-valued mapping on X. Readers may refer to [1–17] for details.
The purpose of this paper is to revisit the proximal point algorithms for finding solution of (1) in Hilbert

spaces. The proximal point algorithm could be traced back to [18], which was not capable of solving
variational inclusions. In the light of Rockafellar’s work [19,20], where its original purpose was to solve
constrained nonlinear optimization problems, currently we are able to use the proximal point algorithm
to study variational inclusion problems. However, ′the situation becomes considerably more complicated
when M fails to monotone′. (See [3, Page 1081].) Some new approaches of the subject were taken in [3–6],
dealing with a class of nonmonotone operators. Among these endeavors, Verma [5] provided a proximal
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point algorithm for over-relaxed A-maximal m-monotone inclusion problems, but unfortunately leading to
incorrect results in [5]. We point out in [6] that the convergence rate of the proximal point algorithm [5] is
larger than the real number one, implying that the strong convergence in [5] cannot be obtained accordingly.
Up to date, the following question is still open: ‘The question on whether the strong convergence holds or not
for the over-relaxed proximal point algorithm is still open.’ (See [6, Page 1743].) To remedy the incorrectness
of [5], in Section 3 we will suggest to use error analysis technique to analyze convergence. The strong
convergence of this paper requires only the over-relaxed A-maximal m-monotonicity and continuity of the
underlying operator. Therefore we affirmatively answer the above open question in [6].

2. Preliminaries

In this section we recall some important concepts and known results so as to prove the strong convergence
of a new proximal point algorithm in Section 3.

Let M : X → 2X be a multi-valued mapping on X. We denote both the mapping M and its graph
by M , i.e., the set {(x, y) : y ∈ M(x)}. This is to state that a mapping is any subset M of X × X, and
M(x) = {y|(x, y) ∈ M}. If M is single valued, we will use M(x) to represent the unique v such that
(x, v) ∈M . The domain of a map M is defined by

dom(M) := {x ∈ X|∃y ∈ X, such that (x, y) ∈M} = {x ∈ X|M(x) ̸= ∅}.

An inverse M−1 of M is defined by {(y, x)|(x, y) ∈M}.

Definition 2.1 ([3–5]). Let M : X → 2X be a multi-valued mapping on X. The mapping M is said to be:

(i) Monotone if

⟨u∗ − v∗, u− v⟩ ≥ 0, ∀(u, u∗), (v, v∗) ∈ graph(M).

(ii) r-strongly monotone if there exists a positive constant r such that

⟨u∗ − v∗, u− v⟩ ≥ r∥u− v∥2, ∀(u, u∗), (v, v∗) ∈ graph(M).

(iii) m-relaxed monotone if there exists a positive constant m such that

⟨u∗ − v∗, u− v⟩ ≥ (−m)∥u− v∥2, ∀(u, u∗), (v, v∗) ∈ graph(M). (2)

Clearly a r-strongly monotone mapping must be a monotone mapping, and a monotone mapping must be
a m-relaxed monotone mapping, but the converse is not true. Therefore the class of the m-relaxed monotone
mappings defined in Definition 2.1(iii) is the most general class, and hence Definition 2.1(iii) includes all of
Definition 2.1(i) and (ii) as special cases.

Definition 2.2 ([5]). Let A : X → X be a single-valued mapping. The mapping M : X → 2X is said to be
A-maximal m-relaxed monotone if:

(i) M is m-relaxed monotone for m > 0,
(ii) R(A+ ρM) = X for ρ > 0.
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