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a b s t r a c t

In this paper, problem of robust finite-time stability and control is first time dis-
cussed for singular linear time-delay systems subject to disturbance. By developing
delay singular value decomposition approach combining with linear matrix inequal-
ity (LMI) technique, new sufficient conditions for the existence of such controllers are
proposed in terms of the solvability to a set of LMIs. Finally, a numerical example
is given to illustrate the effectiveness of the proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and problem formulation

In this paper we are concerned with the following singular linear time-delay system
Eẋ(t) = Ax(t) +Dx(t− h) +Bu(t) +B1w(t), t ≥ 0,
x(t) = ψ(t), ∀t ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm1 is the control, w(t) ∈ Rm2 is the disturbance; A,D,B,B1, are
constant matrices of appropriate dimensions; E ∈ Rn×n is a singular matrix, rank E = r < n. This system
is viewed as a singular linear time-delay system, which has attracted particular interest in the literature
due to the comprehensive applications in economics, robotics, electrical and chemical systems [1,2]. The
research activities in stability and control of singular systems with delay have provided many interesting
results using algebraic methods, state-space decomposition approaches, Lyapunov functional method, etc.
[3–6]. On the other hand, in many practical applications, the main concern is the behavior of the system
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within a finite horizon, such as aerospace control systems, machining control systems, etc., the control
processes of which are implemented in a finite-time interval. To deal with such situations, the problem
of finite-time stability (FTS) focuses its attention on the behavior of a system response over a finite-
time interval [7]. FTS means that once we fix a time interval, the state of a system does not exceed
a certain bound during this specified time interval. It is important to recall that FTS and Lyapunov
asymptotic stability (LAS) are independent concepts; indeed a system can be FTS but not LAS, and
vice versa. While LAS deals with the behavior of a system at infinity time, FTS is a more practical
concept, useful to study the behavior of the system within a finite short interval, and therefore it
finds useful applications whenever it is desired that the state variables do not exceed a given threshold
during the transients. The finite-time stabilization concerns with the design of a feedback controller
which ensures the FTS of the closed-loop system and the problem of guaranteed cost control (GCC)
is to find a feedback controller to finite-time stabilize the system guaranteeing an adequate cost level
of performance. Based on linear matrix inequality techniques, some results have been obtained in [8,
9] for FTS and GCC of linear time-delay systems. However, when the controller is designed for a real
plant, it is also desirable to design a controller that not only makes the closed-loop singular system
asymptotically stable, but also guarantees an adequate level of performance [10–12]. It should be noticed
that all the related results on stability and control for singular systems mentioned above were developed
in the context of Lyapunov stability, while very little attention has been paid to the finite-time stability.
The main contribution of this paper is to get new sufficient conditions for the design of a state feedback
controller which makes the closed-loop system finite-time stable and guarantees an adequate cost level of
performance.

Definition 1.1. (i) System (1) is regular if det(sE − A) is not identical zero. (ii) System (1) is impulse-free
if deg(det(sE −A)) = r = rankE.

The singular delay system (1) may have an impulsive solution, however, the regularity and the absence of
impulses of the pair (E,A) ensure the existence and uniqueness of an impulse free solution to this system,
which is shown in [1].

Definition 1.2. For given positive numbers c1, c2, T and a symmetric positive definite matrix R, the singular
system (1) is robustly finite-time stabilizable w.r.t (c1, c2, T,R) if it is regular, impulse-free and there exists
a feedback control u(t) = Kx(t) such that the solution of the closed-loop system Eẋ(t) = (A+ BK)x(t) +
Dx(t− h) +B1w(t) satisfies the following relation

sup
−h≤s≤0

{ψ⊤(s)Rψ(s)} ≤ c1 =⇒ x⊤(t)Rx(t) < c2, ∀t ∈ [0, T ],

for all disturbances w(t) satisfying w⊤(t)w(t) ≤ d, t ∈ [0, T ], for a given number d > 0.

Definition 1.3. If there exist a feedback control law u∗(t) = Kx(t) and a positive number J∗ such that the
system (1) is robustly finite-time stabilizable w.r.t (c1, c2, T,R) and the cost function satisfies J(u∗) ≤ J∗,
where

J(u) =
 T

0
[x⊤(t)Q1x(t) + x⊤(t− h)Q2x(t− h) + u⊤(t)Q3u(t)]dt, (2)

Q1, Q2 ∈ Rn×n are symmetric non-negative definite matrices, Q3 ∈ Rm1×m1 is a symmetric positive definite
matrix, then the value J∗ is a guaranteed cost value and the designed control u∗(t) is said to be a guaranteed
cost controller.

The problem is to design a state feedback controller such that the closed-loop system is finite-time stable
and the cost function value is less than a specified upper bound for all admissible disturbances.
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