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in the case of inviscid traveling waves. More precisely, we prove that traveling waves
of the Fisher equation with wave speed ¢ > 0 converge to the inviscid traveling
wave with speed ¢ > 0 as the diffusion vanishes. A complete diagram that shows the
relation between the diffusive and inviscid traveling waves is given in this paper.
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1. Introduction

It is believed that traveling wave phenomena in a reaction diffusion equation,
up = dug, +¥(u), u>0, x €R,

are obtained by an interplay between the diffusion and the reaction. For example, there exists a unique
traveling wave solution for a bistable nonlinearity case, say ¥ (u) = u(1 —u)(u—a), 0 < a < 1, that connects
the two stable steady states, v = 0 and 1. However, such a traveling wave solution does not exist if d =0
or 1y = 0. In other words, the unique traveling wave solution has been produced by an interplay between the
two different mechanisms. However, such a belief fails when the traveling wave connects a stable steady state
to an unstable one. First of all, there exist inviscid (d = 0) traveling waves for any wave speed which stand
without any help of diffusion. On the other hand, diffusive (or viscous) traveling waves exist only when the
wave speed is greater than or equal to a minimum speed. In other words, the diffusion does not produce
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traveling waves, but a gap in wave speeds. The purpose of this note is to clarify the role of each component
involved in the traveling wave phenomenon that connects a stable steady state to an unstable one.

To be more specific we consider the Fisher equation case in this note, i.e., ¥(u) = u(1 — u), where the
stable steady state is u = 1 and the unstable one is v = 0. This Fisher equation provides the phenomenon
in a simplest form. If d = 0, there is a traveling wave for any given wave speed ¢ > 0 (see Section 2). We
denote it by v. and call it an inviscid traveling wave. However, if d # 0, there exists a traveling wave of
a speed ¢ > 0 if and only if ¢ > ¢* = 2v/d. We denote it by Uc,q and call it a diffusive traveling wave.
The theory of this paper is for the relation between the inviscid and diffusive traveling waves. First we
show that u.q — v. uniformly as d — 0 in Theorem 1. This convergence gives an insight for the existence
of a continuum of traveling wave speeds in the Fisher equation, where each fixed speed corresponds to an
inviscid traveling wave as d — 0. The convergence u¢ ¢ — Uc+,q as ¢ — cx with a fixed d is given in Theorem 2
and the convergence of u.-(q),q to a step function as d — 0 is given in Theorem 3. The convergence of v,
to the same step function as ¢ — 0 directly comes from the explicit formula of v. in (2.5). Finally, these
relations of convergence among the step function, diffusive and inviscid traveling waves complete a diagram
of convergence given in Fig. 1, which is discussed in Section 4.

Studies of the vanishing viscosity limit are classical in hyperbolic problems of conservation laws. Such
studies include the Fisher equation as a special case of zero convection when a monostable reaction term is
included (see [1-5]). In particular, it was shown in [6-8] that the vanishing viscosity limit of minimum wave
speeds is the minimum wave speed of the inviscid traveling wave, which is a related result to Theorem 3.
The convergence relations given in this paper, Fig. 1, may provide a succinct insight for the full dynamics
in a simplest form without convection.

Studies of the traveling wave phenomenon of reaction diffusion equations have a long history. The Fisher
equation has been introduced by Fisher [9] and by Kolmogorov, Petrovskii and Piscounoff [10]. The purpose
of Fisher was to perform modeling in population genetics, where the traveling wave solutions represented
the spread of the advantageous gene through space. Later on, the Fisher—-KPP equation was also used in
ecology to model waves of an invading population (cf. Holmes et al. [11]) and in wound healing, where the
solutions represent healing waves of cells in the skin (cf. Sherratt and Murray [12]).

2. Inviscid traveling waves

Consider the Fisher equation,
U = dtgy + u(l —u), u(z,0) =u’(x), t>0, z€R,

where u(x,t) is a population density and d > 0 is a constant diffusivity. Let 2 = & — ¢t be the variable for the
traveling wave solution with a speed ¢ > 0. Due to the symmetric structure of the equation we may consider
positive wave speed ¢ > 0 and the negative one can be treated symmetrically. It is well known that, for any
¢ > ¢*, there exists a traveling wave solution of wave speed ¢, where the minimum wave speed is ¢* = 2v/d
(see [13,14]). Let u be the traveling wave solution for a wave speed ¢ > ¢*, i.e., u(x,t) = u(x — ct) = u(z).

Since uy = —cu’ and aa—;u = u”, the traveling wave solution satisfies
du”" +cu' +u(l—u)=0, z€R. (2.1)
We are looking for a monotone traveling wave that connects the stable steady state © = 1 and the unstable
one u = 0:
zggloou(z) =1, u(0)=0.5 and Zlin;ou(z) =0. (2.2)

The conditions at infinity allow positive wave speeds only. Remember that the traveling wave phenomenon
of the Fisher equation has translation invariance and the condition «(0) = 0.5 picks the symmetric one with
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