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a b s t r a c t

Using the inverse diffractive grating problem as an example, we demonstrate how a
super-resolution can be achieved stably by using far-field data. The idea is to place
a slab of a homogeneous medium with a large index of refraction above the grating
surface, and more propagating wave modes can be utilized from the far-field data
which contributes to the reconstruction resolution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

According to the Rayleigh criterion, there is a resolution limit to the sharpness of details that can be
observed by conventional far-field optical microscopy, one half the wavelength, referred to as the diffrac-
tion limit [1]. The loss of the details is related to the non-radiative components of the field known as
evanescent waves [2]. It is severely ill-posed to directly use the evanescent waves since the noise in the mea-
surements will be amplified exponentially. Therefore, near-field data is of paramount importance to achieve
super-resolution [3,4]. However, it might be cumbersome to measure the near-field data as a sophisticated
control is needed for the probe when scanning samples.

We use the diffraction grating problem as an example to demonstrate how a super-resolution can be
achieved stably by using the far-field data. The idea is to place a slab of a homogeneous medium with a
large index of refraction above the grating surface. A particular function of the slab is to convert more prop-
agating wave modes of the far-field data into the near-field. The approach avoids measuring the sensitive
near-field data.

Scattering theory in periodic structures has many significant applications in optical industry. The scat-
tering problems have been studied extensively for periodic structures [5–9,14,15]. This paper is built upon
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Fig. 1. Schematic of the problem geometry.

our recent work on solving a wide class of inverse surface scattering problems for acoustic, electromagnetic,
and elastic waves [10–12], where the methods were designed especially for the near-field data. It reflects
our effort to design more practical models and efficient methods for solving quantitatively complex inverse
scattering problems with high resolution.

2. Problem formulation

Consider a perfect electrically conducting surface Γf = {(x, y) ∈ R2 : y = f(x), 0 < x < Λ}, where f is a
periodic function with period Λ. The scattering surface function f is assumed to have the form

f(x) = εg(x), (2.1)

where ε > 0 is a sufficiently small constant g is also a periodic function with the same period Λ. Hence the
surface Γf is a small perturbation of the planar surface Γ0 = {(x, y) ∈ R2 : y = 0, 0 < x < Λ}.

Let a slab of a homogeneous dielectric medium be placed above Γf . The slab’s bottom face is Γh =
{(x, y) ∈ R2 : y = h, 0 < x < Λ}, where h, satisfying ∥f∥∞ < h ≪ λ, is a positive constant. Here λ is the
wavelength of the incident field. The slab’s top face is Γb = {(x, y) ∈ R2 : y = b, 0 < x < Λ}, where b,
satisfying h≪ b = O(λ), is also a positive constant.

Denote by Ω the bounded domain between Γf and Γh, i.e., Ω = {(x, y) ∈ R2 : f < y < h, 0 < x < Λ}.
Let R be the domain of the slab, i.e., R = {(x, y) ∈ R2 : h < y < b, 0 < x < Λ}. Denote by U the open
domain above Γb, i.e., U = {(x, y) ∈ R2 : y > b, 0 < x < Λ}. The index of refraction is one in Ω and U since
they are free spaces, and has a constant value n > 1 in the slab R. The schematic of the problem geometry
is shown in Fig. 1.

Let an incoming plane wave φinc(x, y) = e−iκy be normally incident on Γb from above, where κ is the free
space wavenumber. Let ψ, φ, and ϕ be the diffracted field in U , the total field in R, and the total field in
Ω , respectively. They satisfy the Helmholtz equations:

∆ψ + κ2ψ = 0 in U,

∆φ+ (κn)2φ = 0 in R,

∆ϕ+ κ2ϕ = 0 in Ω ,
(2.2)

and the boundary conditions: 
ϕ = 0 on Γf ,
∂yψ = Bψ on Γb.

(2.3)
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