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a b s t r a c t

In this short note we treat a 1 + 1-dimensional system of changing type. On
different spatial domains the system is of hyperbolic and elliptic type, that is,
formally, ∂2

t un − ∂2
xun = ∂tf and un − ∂2

xun = f on the respective spatial
domains


j∈{1,...,n}


j−1
n
, 2j−1

2n


and


j∈{1,...,n}

 2j−1
2n ,

j
n


. We show that (un)n

converges weakly to u, which solves the exponentially stable limit equation ∂2
t u +

2∂tu + u − 4∂2
xu = 2(f + ∂tf) on [0, 1]. If the elliptic equation is replaced by a

parabolic one, the limit equation is not exponentially stable.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For n ∈ N and a given smooth f , we consider the following equation of mixed type:

∂2
t un(t, x)− ∂2

xun(t, x) = ∂tf(t, x), x ∈


j∈{1,...,n}


j − 1
n

,
2j − 1

2n


,

un(t, x)− ∂2
xun(t, x) = f(t, x), x ∈


j∈{1,...,n}


2j − 1

2n ,
j

n


,

(∂xun)(t, 0) = (∂xun)(t, 1) = 0,

(t ∈ R),

subject to zero initial conditions and conditions of continuity at the junction points {(2j − 1)/2n; j ∈
{1, . . . , n − 1}} for un. We show that for n → ∞ the sequence of solutions (un)n∈N converges weakly in
L2

loc(R× [0, 1]) to u, which solves

1
2∂

2
t u(t, x) + ∂tu(t, x) + 1

2u(t, x)− 2∂2
xu(t, x) = f(t, x) + ∂tf(t, x), ((t, x) ∈ R× (0, 1)) (1)

subject to ∂xu(t, 0) = ∂xu(t, 1) = 0 for t ∈ R and zero initial conditions. Moreover, we show that the
asymptotic limit admits exponentially stable solutions. Note that the stability result for the limit equation
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is due to the superposed effect of the hyperbolic type and the elliptic type equation: Indeed, it is remarkable
that (∂2

t − ∂2
x)u = ∂tf is not exponentially stable, if considered on the whole of [0, 1] as underlying spatial

domain. Moreover, we will show that if we replace the elliptic part, un(t, x) − ∂2
xun(t, x) = f(t, x), by a

corresponding parabolic one, that is, ∂tun(t, x)− ∂2
xun(t, x) = f(t, x) the limit equation reads

∂2
t u(t, x) + ∂tu− 2∂2

xu(t, x) = f(t, x) + ∂tf(t, x), ((t, x) ∈ R× (0, 1)) (2)

subject to homogeneous Neumann boundary conditions. Moreover, we find that the limit equation is not
exponentially stable (in the sense of [1, Definition 3.1], see also [2, Section 3.1]).

For the proof of the homogenization (i.e. the computation of the limit equation) and stability results,
we will employ the notion of evolutionary equations developed in [3,4]. We will use results on exponential
stability of [1] (with an improvement in [5]) developed in this line of reasoning. The computation of the
limit equation is based on [6,7]. In the next section, we will recall the notion of evolutionary equations and
the results mentioned. The third section establishes the functional analytic framework for the equations to
study. Moreover, we provide the proof of the result mentioned concerning the hyperbolic–elliptic system.
We address the case where the parabolic equation replaces the elliptic one in the last section.

2. Evolutionary equations

In the whole section, let H be a Hilbert space. For ν ∈ R we define

L2
ν(R;H) :=


f : R→ H; f measurable,


R
∥f(t)∥2He−2νtdt <∞


endowed with the obvious norm (and scalar product). We set

∂t,ν : D(∂t,ν) ⊆ L2
ν(R;H)→ L2

ν(R;H), f → f ′,

where f ′ denotes the distributional derivative and D(∂t,ν) is the maximal domain in L2
ν(R;H). Note that

for all ν ̸= 0, we have ∂−1
t,ν is a bounded linear operator in L2

ν(R;H), see [8, Corollary 2.5]. Note that also
∂−1
t,ν f =

 (·)
−∞ f(τ)dτ for f ∈ L2

ν(R;H) and ν > 0.
For a closed, densely defined linear operator B in H, we shall denote the corresponding lifted operator to

L2
ν(R;H) by the corresponding calligraphic letter, that is,

B : L2
ν(R;D(B)) ⊆ L2

ν(R;H)→ L2
ν(R;H), f → (t → Bf(t)).

The exponentially weighted L2-type spaces have been used to obtain a solution theory for abstract operator
equations in space time. L(H) denotes the space of bounded linear operators in H.

Theorem 2.1 ([3, Solution Theory], [4, Theorem 6.2.5]). Let A be a skew-self-adjoint operator in H,
0 6 M = M∗, N ∈ L(H). Assume there exist c, ν > 0 such that for all µ > ν, we have

µ⟨Mϕ,ϕ⟩+ Re⟨Nϕ,ϕ⟩ > c⟨ϕ,ϕ⟩ (ϕ ∈ H). (3)

Then the operator Bµ := ∂t,µM+N +A with D(Bµ) = D(∂t,µ) ∩D(A) is closable in L2
µ(R;H). Moreover,

Sµ := B−1
µ is well-defined, continuous and bounded with ∥Sµ∥L(L2

µ) 6 1/c.

Remark 2.2. In the situation of Theorem 2.1, assume there is η ∈ R with the property that B−1
µ |C∞c (R;H)

extends to a bounded linear operator Sζ ∈ L(L2
ζ(R;H)) for all ζ > η. Then, by [4, Theorem 6.1.4] or

[1, Lemma 3.6], for all ζ, ξ > η we have that Sξ = Sζ on L2
ζ(R;H) ∩ L2

ξ(R;H).
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