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a b s t r a c t

This paper deals with the lower bound for blow-up solutions to a nonlinear viscoelas-
tic hyperbolic equation. An inverse Hölder inequality with the correction constant is
employed to overcome the difficulty caused by the failure of the embedding inequal-
ity. Moreover, a lower bound for blow-up time is obtained by establishing first-order
differential inequality. This result gives an answer to the problem unsolved in our
earlier work Sun et al. (2014).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the following hyperbolic equation with linear damping
utt −△u− ω△ut + µut = |u|p−2u in [0, T ]× Ω ,
u(0, x) = u0(x), ut(0, x) = u1(x) in Ω ,
u(t, x) = 0 on [0, T ]× ∂Ω ,

(1.1)

where Ω is a bounded smooth domain in RN . µ > 0, p > 2.
We refer to [1] for the motivation and references concerning the study of Problem (1.1). It is well known

that the source term causes finite-time blow-up of solutions [2–6]. However, it is natural to ask that, if the
solution blows up in finite time, can we give an estimate of a lower bound to the blow-up time? In fact, we all
know that the upper bound ensures blowing-up of the solution and the importance of the lower bound is that
it may provide us a safe time interval for operation if we use Problem (1.1) to model a physical process such
as viscoelastic fluids, processes of filtration through a porous media, fluids with temperature-dependent
viscosity etc. But, in general, it is very hard to obtain a lower bound estimate for hyperbolic problems
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because the method that one estimates the derivative of the control functional to establish a first-order
differential inequality in parabolic cases fails. In particular, the first author, Sun and Gao in [7] applied an
energy estimate method and the Sobolev inequalities to give an estimate of the lower bound for the blow-up
time when 2 < p 6 2(N−1)

N−2 . Therefore, we find when the exponent p lies in the interval ( 2(N−1)
N−2 ,

2N
N−2 ], the

embedding relationship H1
0 (Ω) ↩→ L2p−2(Ω) does not hold, which leads to that our method used in [7] is

no longer effective. In order to overcome this difficulty, we have to develop some new ideas or techniques.
In this paper, we apply the interpolation inequality and an energy estimate method to prove the inverse
Hölder inequality with correction constant (Lemma 1.2) and then construct the suitable control functional
to establish a differential inequality. Before stating our main result, let us recall some results on the existence
and blow-up of the solution of Problem (1.1).

Theorem 1.1 ([5]). Let u be the unique local solution to (1.1). If the following conditions are satisfied

(H1) u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω),

(H2) ω > 0, µ > −ωλ1,

(H3) 2 < p ≤ 2N
N − 2 , N > 3; or 2 < p <∞, N = 1, or 2,

λ1 is the first eigenvalue of the operator −△ under homogeneous Dirichlet boundary condition. Then T ∗ <∞
if and only if there exists a t ∈ [0, T ∗) such that

u(t) ∈ U and E(u(t), ut(t)) ≤ d,

where

T ∗ = sup{T > 0;u = u(t) exists on [0, T ]},

U = {u ∈ H1
0 (Ω); J(u) ≤ d, I(u) < 0} and E(u, v) = J(u) + 1

2∥v∥
2
2,

J(u) = 1
2∥∇u∥

2
2 −

1
p
∥u∥pp, I(u) = ∥∇u∥22 − ∥u∥pp,

d = inf
u∈H1

0 (Ω)\{0}
max
λ≥0
J(λu).

By Theorems 1.3 and 2.1 in [7], we have the following results about an estimate to the upper and lower
bounds.

Theorem 1.2 ([7]). Assume that all the conditions of Theorem 1.1 hold and

Ω
u0u1dx > 0, then there exists

a positive number T1 = T1(∥u0∥2, ω, µ, ∥u1u0∥1) <∞ such that T ∗ 6 T1. That is

lim
t→T∗−

∥u∥Lp(Ω) = +∞.

Theorem 1.3 ([7]). Assume that all the conditions of Theorem 1.1 hold, and

u0 ∈ U,

Ω

u0u1dx > 0, E(u0, u1) ≤ d, 2 < p ≤ 2(N − 1)
N − 2 for N ≥ 3.

Then the blow-up time T ∗ satisfies the following estimate

T ∗ ≥
 ∞
H(0)

1
C3yq + 2y + C4

dy,

where the constants C3, C4 depend on p,N, |Ω | and E(0). q =


3−
4
p
, 2 < p 6

2N
N − 1

;

p− 1,
2N
N − 1

< p 6
2(N − 1)
N − 2

.
and H(0) =

Ω
|u0|pdx.
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