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1. Introduction

Recently, the inherent relations between the breather and soliton solutions have been investigated in
several nonlinear evolution equations [1-6]. Under certain conditions, breathers can be converted into some
types of localized and periodic waves, such as multi-peak soliton, antidark soliton, W-shaped soliton and
periodic wave. Specifically, only when the equation possesses one or more free parameters can this transition
happen.

The possibility of a breather decaying into solitons in the nonlinear Schrodinger (NLS) equation has been
demonstrated in Ref. [1]. By the modulational instability (MI), the results have indicated that the standard
NLS cannot provide this process. Ref. [2] has revealed that many localized and periodic waves can be ex-
tracted from a unified exact solution under specific parameter conditions in the coupled NLS-MB equations.
For the Hirota equation, Ref. [3] has presented an exact expression for the transformation. Furthermore,
the state transition between the rogue wave and W-shaped wave has also been analyzed in Ref. [6]. In this
paper, we consider the conversion in a coupled Hirota system
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where, u(z,t) and v(z,t) are the complex smooth envelop functions, z and t represent the longitudinal
distance and retarded time respectively, and e denotes the coefficient of higher-order effects including
the third-order dispersion, self-steepening and Raman scattering terms. The main aim of this paper is
to construct the breather-to-soliton conversions, derive several kinds of localized and periodic waves, and to
analyze the characteristics of the interactions among these nonlinear waves in System (1.1).

2. One-order breather-to-soliton conversions

Based on some known results of the Darboux transformation (DT) for System (1.1) [7,8], the new solutions
in the first iteration can be given by
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System (1.1) can be discussed in the same way. Choosing ulll = ol = g etk 2Hwt) and separating the
real and imaginary part of the variables and functions involved in the above expression, we can extend the
one-breather solutions on the plane-wave background as
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where
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Solution (2.2) contains two kinds of functions: the trigonometric functions and the hyperbolic functions,
which describe the propagation of periodic waves and localized solitons respectively. V;/k; and V,./k, are
the corresponding velocities. The transformation of breather solutions into solitons becomes possible when
the velocities are identical, that is V;/k; = V,./k,.. Insertion of the detailed V; and V. into it yields the exact
relation as
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Relation (2.3) includes the higher-order coefficient €, the real parameter a and the background frequency

(2.3)

w. € is necessary for this conversion, and its value cannot be zero. In Fig. 1, we convert a breather into the
non-periodic solitons for System (1.1). Fig. 1(a) depicts a breather which is localized in spatial and periodic
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