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a b s t r a c t

In the framework of the Lagrangian field theory, we derive the equations
characterizing shape-dependent natural boundary conditions from the Hamilton’s
principle. Of these equations, one exhibits mathematical pattern similar to general
relativity. In this equation, one side of the sign of equality is the energy–momentum
tensor of field and another side is the combination of mean curvature and Gaussian
curvature of boundary surface. Meanwhile, we verify that the shape-dependent
natural boundary condition can be simplified into the shape equation of lipid vesicle
or the generalized Young–Laplace’s equation under different condition.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Conventionally, the boundary value problem of a field ϕ(t,x) consists of partial differential equations
satisfied by ϕ(t,x) as well as boundary conditions that are imposed ad hoc based on physical considerations
at the boundary points. The boundary conditions are characterized by ϕ(t,x), the derivative of ϕ(t,x) or
combination of ϕ(t,x) and the derivative of ϕ(t,x). Generally, they are supposed to be independent of
curvature of boundary surface. However, if surface energy is concerned, the mean curvature of boundary
surface has been taken into account in the boundary conditions. Such boundary conditions are referred to as
the surface-energy-dependent boundary conditions. Some typical examples can be found in capillary wave,
phase transition and bio-membrane.

The surface-energy-dependent boundary conditions can be traced back to Young and Laplace’s works on
capillary surface [1], in which they proposed the so-called Young–Laplace’s equation. Taking this equation as
the traction boundary condition, the Lord Rayleigh gave a solution to the oscillation of spherical droplet [2].
This solution was later used to model the oscillation and fission of nucleus [3]. Gurtin and Murdoch extended
the Young–Laplace equation into the generalized Young–Laplace equation so as to characterize the surface
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of elastic solid [4]. Further, Steigmann and Ogden proposed reinforced boundary condition by taking into
account the bending stiffness of the surface film [5]. Zhu, Ru and Chen discussed non-uniqueness of boundary
value problems based on the generalized Young–Laplace equation [6].

Recently, Javili, dell’Isola and Steigmann formulated a geometrically nonlinear theory of higher-gradient
elasticity accounting for boundary energies [7]. Based on analytical continuum mechanics, Auffray, dell’Isola
and Eremeyev et al. derived the Euler–Lagrange equations and boundary conditions for second gradient
continua in terms of an objective deformation energy volume density [8]. Eremeyev and Altenbach advanced
the kinematical compatibility conditions characterizing interaction of a second-gradient fluid with an elastic
solid with the surface elasticity [9]. In these works, a common feature is that the surface energy density
depends only on first- and second-gradient of deformation, not explicitly containing the mean and Gaussian
curvature. This means that no coupling exists between deformation and the shape of boundary surface.

As a traction boundary condition, the generalized Young–Laplace equation has been applied to investigate
physical behaviors of nano-structured materials. On the relevant literature, the reader can refer to the
reviews by Wang et al. [10] and Sun [11]. When the Young–Laplace’s equation is used as the traction
boundary condition, the mean curvature in the equation is considered to be known in general. This means
that the shape of boundary surface is given in advance. However, some recent works have shown that
nonlinear coupling exists between the field (e.g., electrostatic field, chemical concentration field and so on)
in soft matter and the shape of its boundary surface [12]. Under this case, the shape of boundary surface is
unknown. Therefore, simultaneously with solving the boundary value problem of field, the shape of boundary
surface also needs to be determined. Since the shape of boundary surface is influenced by the field, a key
problem is how to characterize the coupling between the field and the shape of its boundary surface. To the
best of my knowledge, this is a problem awaiting to be explored.

The aim of this paper is to characterize the coupling between the field and the shape of its boundary
surface in the framework of the Lagrangian field theory. As will be seen later, this coupling represents a type
of new natural boundary condition. We call it the shape-dependent natural boundary condition.

The paper is outlined as follows. In Section 2, we introduce a curvature-dependent surface energy density
in the action functional of field. From this action functional, the Lagrangian equation and shape-dependent
natural boundary condition are derived. In Section 3, we verify that the shape-dependent natural boundary
condition can be simplified into the shape equation of lipid vesicle or the generalized Young–Laplace’s
equation under different condition. Finally, we summarize and comment on the results in this paper.
Notation: The index rules and summation convention are adopted. Latin indices run from 1 to 3. The Greece
letter Ω stands for a bounded domain of R3, and ∂Ω is the boundary surface of Ω . The derivatives with
respect to coordinates are represented as ∂k = ∂/∂xk or (·),k = ∂(·)/∂xk. ∂k = gkj∂j , where gkj is the metric
tensor. The derivative with respect to time is denoted by an upper dot, e.g., ȧ = da/dt. Other symbols will
be introduced in the text where they appear for the first time.

2. Lagrangian field with flexible boundary surface

Let x = {xj} (j = 1, 2, 3) be a 3-dimensional position vector in Ω and t ∈ [t0, t1] be time. A physical field
defined on [t0, t1] ∪ Ω is denoted by ϕ = ϕ(t,x). Depending on circumstances, ϕ can be a scalar, vector or
tensor field. The Lagrangian of the field ϕ is written as L = L(ϕ, ϕ̇, ∂jϕ).

Let spatial domain Ω occupied by ϕ be bounded and the surface ∂Ω of Ω be a smooth surface. We believe
that physical behaviors of ϕ in the interior of Ω is different from that on the boundary of Ω . Therefore, the
action functional of ϕ is supposed to have the form below

A =
 t1
t0


Ω

L(ϕ, ϕ̇, ∂jϕ)dv(x)dt−
 t1
t0


∂Ω

γ(ϕ, ∂jϕ,H,K)da(x)dt, (1)
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