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a b s t r a c t

In this paper, we investigate the endemic dynamics in a host–parasite model under
combined frequency- and density-dependent transmission in a spatially heteroge-
neous environment. We give some properties of the parasite-free and parasite-driven
extinction stationary solutions, and prove that the positive stationary solution set
forms a bounded continuum which connects the parasite-free and parasite-driven
extinction stationary solutions sets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In an effort to understand the host–parasite dynamics, Ryder et al. [1] established the following
host–parasite epidemiological model in terms of the total host density (N) and the prevalence of infection (P ):

dN

dt
= N(b− hN)− µN − αPN, dP

dt
= P


v(c+mN)(1− P )− (b− hN)− α(1− P )


, (1)

where N(t) = S(t)+I(t) the density of the total host population, P (t) = I(t)/N(t) ∈ [0, 1], and S(t) and I(t)
denote the density of the uninfected (susceptible) and infected hosts at time t, respectively. And all param-
eters are positive, b and µ are the birth and natural death rates, respectively, α the rate of disease-induced
mortality (i.e. virulence), h a coefficient of density-dependent host regulation. The transmission

Pv(c+mN)(1− P ) = v(c+mM)SI
N

= (vm)SI
N

+ (vc)SI

is a function that combines two types of contacts: one is density-dependent (vm)SI
N (also called mass action

term), the other is frequency-dependent (vc)SI (also called proportionate mixing term). Here, v is the per
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contact probability of transmission, m and c determine the amount of density- and frequency-dependent
transmission, respectively.

Assume that susceptible and infected hosts move randomly [2–4], and the problem that we are attempting
to address is: how do diffusion of hosts affect the parasite dynamics? For simplicity, assume that the diffusion
coefficient of hosts is d, we therefore consider the following reaction–diffusion host–parasite model:

∂tN − d∆N = N(b− hN)− µN − α(x)PN, x ∈ Ω , t > 0,
∂tP − d∆P = P


v(c+mN)(1− P )− (b− hN)− α(x)(1− P )


, x ∈ Ω , t > 0,

∂nN = ∂nP = 0, x ∈ ∂Ω , t > 0,
N(x, 0) = N0(x) ≥ 0, P (x, 0) = P0(x) ≥ 0, x ∈ Ω ,

(2)

where ∆ the Laplace operator. The spatial heterogeneity is taken into account via the assumption that the
rate of disease-induced mortality α is spatially dependent. Specifically, we require that α(·) ∈ C1(Ω̄) and
α(x) ̸= 0 for x ∈ Ω̄ . It would be noted that the homogeneous case we mention in this paper is that α is
spatially independent. And the habitat Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω , n the
outward unit normal vector on ∂Ω . The homogeneous Neumann boundary condition implies that the system
above is self-contained and there is no individual across the boundary. We require that the initial values
N0(x), P0(x) ∈ C(Ω̄). And the steady state solutions of model (2) satisfy

−d∆N = N(b− hN)− µN − α(x)PN, x ∈ Ω ,

−d∆P = P

v(c+mN)(1− P )− (b− hN)− α(x)(1− P )


, x ∈ Ω ,

∂nN = ∂nP = 0, x ∈ ∂Ω .
(3)

Throughout this paper, for 1 ≤ p ≤ ∞, let Lp(Ω) denote the Banach space of measurable functions u on
Ω with the normal norms

∥u∥p =


Ω

|u(x)|p
1/p

, 1 ≤ p <∞, ∥u∥∞ = max
Ω̄
|u(x)|.

Furthermore, let λ1(q) denotes the least eigenvalue of the problem

−d∆u+ q(x)u = λu, x ∈ Ω , ∂nu = 0, x ∈ ∂Ω ,

here q ∈ C(Ω̄). It is well known that the mapping q → λ1(q) : C(Ω̄) → R is continuous and monotone
increasing.

2. Main results

In this section, we will obtain sufficient conditions for the nonexistence and existence of positive solutions
from the viewpoint of the bifurcation theory [5,6]. As a functional framework for the bifurcation theory, we
introduce the following Banach spaces:

X := W 2,p
n (Ω)×W 2,p

n (Ω), Y = Lp(Ω)× Lp(Ω), for p > n,

where W 2,p
n (Ω) =


w ∈W 2,p(Ω)|∂nw = 0 on ∂Ω


. Then the Sobolev embedding theorem implies that

X ⊂ C1(Ω̄)× C1(Ω̄) for p > n. It is easy to see that model (2) may have four stationary solutions:

(i) Extinction state (0, 0), which means that all parasites and hosts extinct;
(ii) Parasite-free stationary solution (N∗, 0), where N∗ = b−µ

h for b > µ.
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