Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method

Guang-Hui Zheng^{a,*}, Quan-Guo Zhang^b

 ^a College of Mathematics and Econometrics, Hunan University, Changsha 410082, Hunan Province, PR China
 ^b Department of Mathematics, Luoyang Normal University, Luoyang, Henan 471022, PR China

ABSTRACT

ARTICLE INFO

Article history: Received 1 March 2016 Received in revised form 1 June 2016 Accepted 1 June 2016 Available online 11 June 2016

Keywords: Backward problem Logarithmic regularization method Space-fractional diffusion equation Fractional Laplacian Convergence rate *a posteriori* parameter choice

1. Introduction

In this article, we consider the following backward problem for the diffusion equation with space fractional Laplacian

$$u_t(x,t) + (-\Delta)^{\alpha} u(x,t) = 0, \quad x \in \mathbb{R}, \ t \in (0,+\infty),$$
(1.1)

$$u(x,T) = f^{\delta}(x), \quad x \in \mathbb{R}, \ u(x,t)|_{x \to \pm \infty} = 0, \tag{1.2}$$

where $\frac{1}{2} < \alpha \leq 1$, and the one-dimensional fractional Laplacian is defined pointwise by the principal value integral [1]

$$(-\Delta)^{\alpha}\phi(x) = c_{\alpha}P.V.\int_{\mathbb{R}}\frac{\phi(x) - \phi(y)}{|x - y|^{1 + 2\alpha}}dy,$$
(1.3)

* Corresponding author.

http://dx.doi.org/10.1016/j.aml.2016.06.002 0893-9659/© 2016 Elsevier Ltd. All rights reserved.

Applied Mathematics

Letters

In this paper, the backward problem for space-fractional diffusion equation is investigated. We proposed a so-called logarithmic regularization method to solve it. Based on the conditional stability and an *a posteriori* regularization parameter choice rule, the convergence rate estimates are given under *a-priori* bound assumption for the exact solution.

 \odot 2016 Elsevier Ltd. All rights reserved.

E-mail address: zhgh1980@163.com (G.-H. Zheng).

here $c_{\alpha} = \frac{2^{2\alpha} \alpha \Gamma(\frac{1}{2} + \alpha)}{\sqrt{\pi} \Gamma(1 - \alpha)}$. Moreover, the Fourier transform of fractional Laplacian is given by [1]

$$(\widehat{-\Delta})^{\alpha}\phi(\omega) = |\omega|^{2\alpha}\widehat{\phi}(\omega).$$
 (1.4)

The backward problem is determining the initial distribution $u(x, 0) = \varphi(x)$ from the final value measurement data $f^{\delta}(x)$. In fact, according to the Fourier transform, it is easy to see that the fractional Laplacian is the symmetric case (skewness $\theta = 0$) of the Riesz–Feller fractional derivative ${}_{x}D^{\alpha}_{\theta}$, which is defined by Mainardi, Luchko and Pagnini in [2]. Such fractional derivative has a wide range of applications in thermoelasticity [3], ecology [4], and finance, especially modeling for the high-frequency price dynamics in financial markets [5]. It is noting that the non-locality of fractional Laplacian and the ill-posedness lead to the main difficulties for solving the backward problem (see [6]). Therefore, in order to overcome the difficulties, the common way is to introduce a appropriate regularization method. For example, in [6], Zheng and Wei proposed a convolution regularization method and spectral regularization method to solve the backward problem. Furthermore, Shi et al. presented an *a posteriori* parameter choice rule for the convolution regularization method and deduced a log-type error estimate in [7]. In [8], Cheng et al. proposed an iteration regularization method to deal with the inverse problem. A simplified Tikhonov regularization method is applied by Zhao et al. to solve it in [9].

In this paper, we present a logarithmic regularization method to solve the backward diffusion problem. That is, we introduce the following variational functional with a logarithmic type penalty term

$$J(\varphi) = \frac{1}{2} \|u(\varphi(x); x, T) - f^{\delta}(x)\|^{2} + \frac{\beta}{2} \| \left[\mathcal{F}^{-1} \left(\ln(1 + (1 + |\omega|^{2})^{\alpha_{1}}) \right) * \varphi \right](x) \|^{2},$$
(1.5)

where "*" denotes the convolution operation, \mathcal{F}^{-1} denotes the inverse Fourier transform, $\alpha_1 \in \mathbb{R}$ is a arbitrary constant, and $\beta \in (0, 1)$ is a regularization parameter. The minimizer of (1.5) is defined as the regularization solution.

2. Convergence rate estimate of logarithmic regularization method

The Fourier transform and inverse Fourier transform of function f(x) are respectively written as

$$\hat{f}(\omega) = \mathcal{F}\{f(x);\omega\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx,$$
$$f(x) = \mathcal{F}^{-1}\{\hat{f}(\omega);x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega)e^{-i\omega x} d\omega$$

 $\|\cdot\|$ denotes the L^2 norm in $\mathbb R,$ i.e.

$$||f|| = \left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^{\frac{1}{2}},$$

and $\|\cdot\|_{H^p(\mathbb{R})}$ denotes the H^p norm:

$$||f||_{H^p(\mathbb{R})} = \left(\int_{\mathbb{R}} (1+\omega^2)^p |\widehat{f}(\omega)|^2 d\omega\right)^{\frac{1}{2}}.$$

Through Fourier transform, the solution of backward problem (1.1)–(1.2) can be written in the form

$$\hat{u}(\omega,0) = e^{T|\omega|^{2\alpha}} \hat{f}^{\delta}(\omega).$$
(2.1)

Lemma 1 (Conditional Stability [10]). If $||u(\cdot,0)||_{H^p(\mathbb{R})} \leq E$ (p > 0), then we have

$$\|u(\cdot,0)\| \le \sqrt{2}ET^{\frac{p}{2\alpha}} \frac{1}{\left(\ln\frac{1}{\|f(\cdot)\|}\right)^{\frac{p}{2\alpha}}}.$$
(2.2)

Download English Version:

https://daneshyari.com/en/article/1707425

Download Persian Version:

https://daneshyari.com/article/1707425

Daneshyari.com