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a b s t r a c t

This paper is concerned with oscillation of second order sublinear dynamic equations
with oscillating coefficients. By using generalized Riccati transformations, oscillation
theorems are obtained on an arbitrary time scale. Our results provide new
oscillation criteria for arbitrary time scales.
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1. Introduction

Let T be a time scale (i.e., a nonempty closed set of the reals) and assume sup T =∞. In this paper, we
investigate oscillation of second order sublinear dynamic equations of the form

r(t)x∆(t)
∆ + p(t)f(xσ(t)) = 0, t ∈ T, t ≥ t0. (1.1)

Throughout this paper, we shall assume the following conditions hold:

(H1) p ∈ Crd(T,R), 1/r ∈ Crd(T,R+) and
∞
t0

1
r(s)∆s <∞;

(H2) f ∈ C1(R,R) satisfies f ′(x) > 0 for x ̸= 0, and f(0) = 0;
(H3) the sublinear conditions: 0 <

 ε
0

1
f(u)du,

 −ε
0

1
f(u)du < +∞ for all ε > 0.
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For background information on time scales, we refer to the monograph by Bohner and Peterson [1].
A nontrivial solution x(t) of Eq. (1.1) is said to be oscillatory if it is neither eventually positive nor eventu-

ally negative, otherwise it is called nonoscillatory. The equation itself is called oscillatory if all its nontrivial
solutions are oscillatory. The oscillation theory of dynamic equations has been developed extensively during
the past several years. We refer the reader to the monographs [2–11] and the references cited therein.

For completeness, we review some earlier results. In 1975, Kusano and Naito [9] considered the following
second-order sublinear differential equation

(r(t)x′(t))′ + p(t)xα(t) = 0, t ≥ t0 (1.2)

and established the following necessary and sufficient conditions when r(t) > 0 and
∞
t0

1
r(t)dt <∞.

Theorem 1.1. Let 0 < α < 1 be a quotient of odd positive integers, and p(t) ≥ 0. Then Eq. (1.2) is oscillatory
if and only if

∞
t0
R(s)p(s)ds =∞, where R(s) =

∞
s

1
r(ξ)dξ.

In 1993, Zhang [11] considered the following second order nonlinear difference equation

∆(r(n)∆x(n)) + p(n)xα(n+ 1) = 0, t ∈ N (1.3)

and established the following necessary and sufficient conditions when r(n) > 0 and
∞
n=1

1
r(n) <∞.

Theorem 1.2. Let 0 < α < 1 be a quotient of odd positive integers, and p(n) ≥ 0. Then Eq. (1.3) is oscillatory
if and only if

∞
n=1R(n+ 1)p(n) =∞, where R(n) =

∞
i=n

1
r(i) .

It is of particular interest to consider Eq. (1.1) when the coefficient function p(t) is allowed to be negative
for arbitrarily large values of t. Based on this consideration, Jia et al. [3,7] established some sufficient
conditions for oscillation of all solutions of Eq. (1.1). However, these results of Jia et al. [3,7] were obtained
for the case that T is a regular time scale. That is, T is a time scale with inf T = t0 and sup T =∞, and T
is either an isolated time scale (all points in T are isolated) or T is the real interval [t0,∞).

2. Some lemmas

We shall need the following second mean value theorem (see [3,7]) and the differential inequality (see [10]),
which will be useful in the proofs of the main results. We formulate these as Lemmas 2.1 and 2.2.

Lemma 2.1. Let h be a bounded function that is integrable on [a, b]. Let mH and MH be the infimum and
supremum, respectively, of the function H(t) :=

 t
a
h(s)∆s on [a, b]. Suppose that g is nonincreasing with

g(t) ≥ 0 on [a, b]. Then there is some number Λ with mH ≤ Λ ≤MH such that
 b
a
h(t)g(t)∆t = g(a)Λ.

Lemma 2.2. Assume G : T→ R is delta differentiable on T. Assume further that F : R→ R is continuously
differentiable. If the function F satisfies F ′(u) ≥ 0 and F ′′(u) ≤ 0, then

F ′(Gσ(t))G∆(t) ≤ (F ◦G)∆ (t) ≤ F ′(G(t))G∆(t).

3. Main results

Theorem 3.1. Assume that conditions (H1)–(H3) hold. If there exists a function Φ > 0 satisfying Φ∆ ≤ 0
and


Φ∆r

∆ ≥ 0 such that ∞
t0

1
Φσ(s)r(s)∆s =∞ and

 ∞
t0

Φσ(s)p(s)∆s =∞,

then Eq. (1.1) is oscillatory.
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