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a b s t r a c t

We consider a nonlinear PDEs system of Parabolic–Elliptic type with chemotactic
terms. The system models the movement of a population “n” towards a higher
concentration of a chemical “c” in a bounded domain Ω .

We consider constant chemotactic sensitivity χ and an elliptic equation to
describe the distribution of the chemical

nt − dn∆n = −χdiv(n∇c) + µn(1− n),
−dc∆c+ c = h(n)

for a monotone increasing and Lipschitz function h.
We study the asymptotic behavior of solutions under the assumption of 2χ|h′| <

µ. As a result of the asymptotic stability we obtain the uniqueness of the strictly
positive steady states.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of chemotaxis were introduced by Keller and Segel [1] in order to model the
movement and aggregation of amoebae responding to a chemical stimulus. In the last four decades,
chemotactic terms have been used to model different types of biological phenomena, as angiogenesis,
morphogenesis, immune system response, etc. The specific model we are studying features a coupled system
of two PDEs: a parabolic equation with a logistic growth term modeling the density of a population n,

nt − dn∆n = −χdiv(n∇c) + µn(1− n) in x ∈ Ω , t ∈ (0, T ), (1.1)
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where dn, χ and µ are positive constants and Ω ⊂ RN is a bounded domain with regular boundary ∂Ω . An
elliptic equation describes the concentration of a chemical substance c, which acts as the chemoattractant:

−dc∆c = h(n)− c in x ∈ Ω , (1.2)

with initial datum and boundary conditions
∂n

∂n = 0 on x ∈ ∂Ω , t ∈ (0, T ), (1.3)

n(0) = n0 on x ∈ Ω , (1.4)
∂c

∂n = 0 on x ∈ ∂Ω . (1.5)

Solutions to (1.1)–(1.5) which are biologically meaningful must satisfy

n ≥ 0, c ≥ 0. (1.6)

The function h represents the production of the chemical substance by the living organisms, which,
depending on the process, can take different forms. In the literature the function h has different
representations:

• h(n) = n, see Jäger and Luckhaus [2] and Tello and Winkler [3]
•

h(n) = s n
β + n (1.7)

where c satisfies a parabolic equation (see Orme and Chaplain [4])
• A polynomial function h(n) = np.

Myerscough et al. [5] study numerically the steady states of (1.1)–(1.5) and (1.7) focusing on the role of
boundary conditions. In [5] the authors found non-constant steady states for a range of boundary conditions
including (1.3) and (1.5). The parameters studied in [5] are not considered in Theorem 1.2.

We will study the problem (1.1)–(1.5), for a general function h satisfying

h is locally Lipschitz function, (1.8)

there exists a positive constant α > 0 such that

0 ≤ h′ ≤ µdc2χ (1− α). (1.9)

We also assume that the initial data u0 ∈W 2,p(Ω) for some p > N ,
∂u0

∂n⃗
= 0 in ∂Ω

and there exist positive constants n0 and n0 such that

0 < n0 ≤ n0 ≤ n0 <∞. (1.10)

In Section 2 we prove the following theorem.

Theorem 1.1. Under assumptions (1.8)–(1.10), there exists a unique solution (n, c) to (1.1)–(1.5) and it
satisfies

|n− 1|L∞(Ω) + |c− h(1)|L∞(Ω) −→ 0 when t −→∞. (1.11)

In Section 3 we shall use Theorem 1.1 to study the steady states of (1.1)–(1.5). The result is enclosed in
the following theorem:
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