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1. Introduction

In this paper, we consider the following incompressible micropolar fluid equations in dimension two [1,2]:

ug +u-Vu+ Vi = (v + ) Au + 2(V+w, (1.1)
wi +u- Vo =yAw— 20Vt u— 4w, (1.2)
V-u=0, (1.3)

where the unknown functions v = (uj,u2), w, and =, are the velocity field, micro-rotational velocity and
pressure, respectively. The constants v, v and ( are the Newtonian kinetic viscosity, the angular viscosity
and the dynamic micro-rotation viscosity. Here, and in what follows,

vt = (0y, —0x), Vtou= Oyt — Ogug, Viw = (Oyw, —0yw).

If w = Const and ¢ = 0, then system (1.1)—(1.3) reduces to the classical Navier—Stokes equations which

has been extensively studied [3-6].
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Due to its importance in mathematical physics, there have been many papers [7-13] concerning the exis-
tence, uniqueness and regularity problems of the micropolar fluid equations. By using the methods in [4,6],
Galdi and Rionero [9] (see also [10]) proved the global existence of weak solutions of (1.1)—(1.3). The local
existence and uniqueness of strong solutions to the micropolar flows was investigated in [12,13]. Dong and
Zhang [11] showed the global regularity of the micropolar fluid equations with partial viscosity (v = 0) in
the 2D whole space. The zero limits of anger and micro-rotational viscosities (i.e., (,y — 0) for the two-
dimensional micropolar fluid equations with boundary effect were proved in [14]. In [15], they proved the
vanishing microrotation viscosity limit (¢ — 0) in the case of zero kinematic viscosity (v = 0, v > 0) or zero
angular viscosity (v > 0, v = 0). Some works about the partial viscosities can be found in [16-18].

Our main purpose in this paper is to justify the limit process. Formally, if ¥ — 0, then system (1.1)—(1.3)

becomes
Uy +u-Va+ VT = (v+)Au+ 2(vie, (1.4)
W+ - Vo =—-20Vt - a—4(w, (1.5)
V-u=0. (1.6)

Our result concerning the vanishing limit process from (1.1)—(1.3) to (1.4)—(1.6) can be formulated as
follows.

Theorem 1.1. Suppose that (ug,wo) satisfy ug,wo € H™(R?) with m > 3, there exists a unique global solution
(u,w,m) to (1.1)~(1.3) on R? x [0, T satisfying

u € L>=(0,T; H™(R?)) N L2(0, T; H™ T (R?)),

w € L>(0,T; H™(R?)).

Moreover, there exists a positive constant C, independent of -, such that

T
OE?ET(HUH%IT" +[lwlFm) +/0 (lullzmer +Alwllzmer)dt < Clluollzm, lwoll v, ¢, T). (1.7)

As a result, there exists a subsequence of (u,w), still denoted by (u,w), such that as v — 0,

u—u strongly in L>(0,T; H™™1),
w— @ strongly in L>=(0,T; H™™1),

where (u,w) is a global strong solution of (1.4)—(1.6). In particular,
T
sup (= @Zms + [l — G| Zms) + / = @lfm_sdt < C
0<t<T 0

and

sup (||[D"Hu—a)||72 + [|D™Hw - @)|72) < Cr.
0<t<T

2. Proof of Theorem 1.1

In [11], they used the Littlewood—Paley methods to prove the global regularity of (1.4)—(1.6). In fact, the
term yAw plays positive effect in the energy estimate. Therefore, by the same argument of [11], one can get
the y-independent estimates (1.7) for the solution of (1.1)—(1.3). Here, we will show the proof of (1.7) via a
different approach.

Now, we introduce the following Kozono—Taniuchi’s inequality [19] and the key estimate in [11].
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