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a b s t r a c t

We establish a relative entropy inequality for the compressible Navier–Stokes equa-
tions, posed on domains with time-dependent moving boundaries. Using the relative
entropy, a weak–strong uniqueness result is shown for the class of finite energy weak
solutions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The compressible Navier–Stokes equations comprise a well-known model for the evolution of linearly vis-
cous fluids. Whereas typically these PDEs are posed on fixed spatial domains, there is a large interest in
the case of moving domains, sometimes referred to as non-cylindrical domains. In this paper, we assume the
time-dependent boundary behavior is given, as opposed to free-boundary problems in which case the do-
main itself is unknown. Applications of Navier–Stokes on moving domains can be found in hemodynamics [1],
respiratory systems [2], amongst others.

The objective of this paper is to establish a relative entropy inequality for compressible Navier–Stokes on
moving domains. Relative entropies are functionals that measure a sort of distance between two solutions in
a given function space. These functionals are often used to compare a weak solution with a (possibly hypo-
thetical) strong or classical solution. This is particularly relevant for the case of Navier–Stokes equations, in
which typically only weak solutions are known to exist. The principle of weak–strong uniqueness establishes
that a weak and strong solution coincide, provided they both exist and have the same initial data. This
principle can be deduced from the relative entropy inequality. A relative entropy and weak–strong result in
the context of compressible Navier–Stokes on fixed domains are established in [3]. For similar results on the
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Navier–Stokes–Smoluchowski system, see [4]. Relative entropies in the context of hydrodynamic limits can
be found in [5–7], amongst others.

The existence of weak solutions for incompressible Navier–Stokes on moving domains goes back to
Sather [8]. In the case of compressible Navier–Stokes, weak solutions are established using penalization
methods for no-slip boundaries in [9], and for slip boundaries in [10]. See also [11] for existence of weak
solutions for a Navier–Stokes–Smoluchowski system on moving domains using penalization methods. The
low Mach number limit for Navier–Stokes in a similar context is explored in [12].

With an evolving spatial domain, we can no longer consider Bochner-type functions mapping the time
variable into a fixed function space. In order to make precise the functional setting, we choose function
spaces similar to those defined in [13]. In this case, functions are defined via global extension by zero outside
the moving fluid domain. These types of results are extended in [14,15], where so-called evolving spaces
are defined via a pushforward/pullback map to associate function spaces at any time t > 0 with reference
spaces at the initial time t = 0. For similar results on PDE with moving spatial domains, see [16,17], and
the references therein.

The rest of the paper is outlined as follows. In Section 2, we discuss the governing equations and
assumptions used in the sequel. Also in this section, we establish the functional framework needed to deal with
the moving domain. In Section 3, we state the relevant existence result for weak solutions. The necessary
energy inequality is also established. Finally in Section 4, we derive the relative entropy inequality, and
deduce a weak–strong uniqueness result.

2. Preliminaries

The compressible Navier–Stokes equations consist of the conservation of mass, and conservation of
momentum,

∂tρ+ divx(ρu),
∂t(ρu) + divx(ρu⊗ u) +∇xp(ρ) = divxS + ρf ,

(1)

where ρ(t, x) is the fluid density, and u(t, x) is the fluid velocity. The external forcing is given by f(t, x),
while the viscous stress tensor S is given through the Newtonian law,

S(∇xu) = µ

∇xu + (∇xu)T


+ λdivxuI, (2)

where the (constant) viscosity coefficients satisfy

µ > 0, λ+ 2
3µ ≥ 0.

We assume, for simplicity, that the pressure follows the γ-law

p(ρ) = aργ , (3)

with constants a > 0 and γ > 3
2 .

The system (1) is posed on a moving spatial domain, which in turn is embedded in the “hold all” domain
D. Indeed, for all t ≥ 0, we assume that Ωt ⊂ D ⊂ R3 evolves according to a given “regular” velocity field
V = V(t,x), which is assumed to be divergence-free. The domain moves according to the flow generated by
V, given as the solution to 

d
dtX(t,x) = V(t,X(t,x)), t > 0,
X(0,x) = x, x ∈ Ω0.

(4)

Indeed we have that Ωt = X(t,Ω0), where Ω0 ⊂ D is a bounded initial domain.
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