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a b s t r a c t

Hitherto, as a tool for tracing all branches of nonlinear differential equations,
resolution-increasing homotopy methods have been applied only to finite difference
discretizations. However, spectral Galerkin algorithms typically match the error of
fourth order differences with one-half to one-fifth the number of degrees of free-
dom N in one dimension, and a factor of eight to a hundred and twenty-five in
three dimensions. Let u⃗N be the vector of spectral coefficients and R⃗N the vector
of N Galerkin constraints. A common two-part procedure is to first find all roots of
R⃗N (u⃗N ) = 0⃗ using resultants, Groebner basis methods or block matrix companion
matrices. (These methods are slow and ill-conditioned, practical only for small N .)
The second part is to then apply resolution-increasing continuation. Because the
number of solutions is an exponential function of N , spectral methods are exponen-
tially superior to finite differences in this context.

Unfortunately, u⃗N is all too often outside the domain of convergence of Newton’s
iteration when N is increased to (N+1). We show that a good option is the artificial
parameter homotopy H⃗(u⃗; τ) ≡ R⃗N+1(u⃗)− (1− τ)R⃗N+1(u⃗N ), τ ∈ [0, 1]. Marching
in small steps in τ , we proceed smoothly from the N -term to the N + 1-term
approximations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When a nonlinear differential or integral equation is discretized with N degrees of freedom (grid point
values or Fourier coefficients), the result is a set of N nonlinear equations. If the nonlinearity is a polynomial
in the unknown u(x), the discretization is a system of N -variate polynomials.

Unfortunately, such systems are often very challenging. Recently, however, reliable solvers for polynomial
systems have become widely available. Most are very slow and therefore limited to small N . As noted
by Allgower, Bates, Sommese and Wampler [1], though, small-N solutions are only the “opening act”.
The “continuation method” is the simple but powerful strategy of varying a parameter (either physical or
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numerical) in small steps, using the converged solution for the previous parameter value, or the extrapolation
of several previous solutions, as the first guess for the next. In principle, one can track all the physically-
interesting branches as accurately as one pleases by combining continuation in the physical parameters with
resolution-increasing continuation in the number of grid points or spectral coefficients N . Unfortunately, N
is always an integer and there is no compelling reason for the N -term solution to lie within the convergence
domain of a rootfinding iteration in the (N + 1)-dimensional parameter space.

The proposed remedy is an artificial parameter homotopy. If the system of nonlinear algebraic equations
is denoted by R⃗N and its solution by u⃗N , a vector of Fourier or Chebyshev coefficients, then the “Newton
Degree-Increasing Spectral Homotopy” [DISH] is the one-parameter family of nonlinear polynomial or
transcendental equations

H⃗(u⃗) ≡ R⃗N+M (u⃗)− (1− τ)R⃗N+M (u⃗N ), τ ∈ [0, 1] (1)

where M ≥ 1 is a positive integer. We mostly choose M = 1, but there is no inherent restriction on its size.
The first step is to make a vector of length (N +M) whose first N elements are the spectral coefficients
that solve the degree N system and the remaining M elements are zeros. When τ = 0, the homotopy is
R⃗N+M (u⃗) − (1 − τ)R⃗N+M (u⃗N ) whose exact solution is u⃗N . When τ = 1, the homotopy reduces to our
target system H⃗(u⃗; τ = 1) = R⃗N+M (u⃗). Thus, the homotopy system does indeed smoothly morph from the
solution we know to the solution we seek. We can march from N to N +M using steps in the parameter τ
as small as we please.

This “Newton homotopy” was “commonly used” by 1968 [2]. Newton-DISH is novel only as an instance
of the family of Degree-Increasing Spectral Homotopies.

Trajectories may collide if τ is real; the collision remedy [unneeded here] is to march from τ = 0 to τ = 1
through a semicircle or other user-chosen contour in the complex plane [3].

2. Example

The “Fifth-Degree Korteweg–de Vries” [FKdV] equation is

−ν uXXXXX + uXXX + (u− c)uX = 0 [FKdV Eq.] (2)

subject to the periodic boundary condition that u(X) = u(X + 2π) [4,5]. The Fourier approximation is

uN (X) = A cos(X) +
N
n=2
an cos(nX). (3)

The solution branches are parameterized by “amplitude” A, the coefficient of cos(X). The phase speed c
is an unknown. The coefficient-fixed parameterization excludes the trivial solution that all coefficients are
zero. The residual function is the result of substituting the Fourier series into the differential equation

R(x; c, a2, . . . , aN ) = −ν uN,XXXXX + uN,XXX + (u− c)uN,X . (4)

Galerkin’s method minimizes the residual through the constraints that the first N spectral coefficients of
the residual are zero,

Rj = 1
π

 π
0

sin(X)R(x; c, a2, . . . , aN ) dX = 0, j = 1, 2, . . . , N. (5)

The elements of the spectral homotopy from N = 2 to N = 3 are

H1 = 2A+ 2 ν A+ 2 cA−Aa2 − a2 a3 (6)

H2 = 64 ν a2 + 16 a2 + 4 ca2 −A2 − 2Aa3 (7)

H3 = {54 + 486 ν + 6c} a3 − τ3Aa2. (8)
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