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a b s t r a c t

In this letter, an efficient numerical scheme is discussed to solve the nonlinear
differential equation of fractional order with boundary conditions. The technique
relies on the Quasi-Newton’s method (QNM) and the simplified reproducing
kernel method (SRKM). Two numerical examples are considered to confirm the
performance of the proposed method and comparisons with the existing solution
techniques are reported as well. Numerical results faithfully reveal the accuracy,
efficiency and simplicity of the method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, numerous applications of nonlinear boundary value problems for fractional differential
equations (FBVPs) have occurred in many branches of science and engineering such as bioengineering,
biophysics, control theory, finance and signal processing. The fractional-order models describe natural
phenomenons more practical and realistic than the classical integer-order models because of their excellent
instrument for the description of memory and hereditary properties.

Motivated by the consequent growing applications of FBVPs, increasing interests have been given to the
development of analytical and efficient numerical techniques concerning with such problems. For instance,
He [1] was the first to propose the variational iteration method and homotopy perturbation method for
finding the solutions of linear and nonlinear problems. These methods have been successfully extended
by many authors [2,3] for finding the analytical approximate solutions as well as numerical approximate
solutions of fractional differential equations. On the other hand, the monotone iterative technique, combined
with the method of lower and upper solutions [4–7] were introduced to study the FBVPs. Momani and
Aslam Noor [8] established the implementation of ADM to derive analytic approximate solutions of the
linear and nonlinear boundary value problems for fourth-order fractional integro-differential equations.
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In this letter, a novel iterative scheme called Quasi-Newton’s method [9] is extended to solve the following
nonlinear FBVPs: 

Dαu(x) + p(x)N (u) = f(x), x ∈ [0, 1],
u(0) = λ0, u(1) = λ1, u′(0) = λ2

(1)

where p, f are continuous functions, N is nonlinear, and Dα is the Caputo derivative of order α. Here we
consider the case 2 < α < 3.

The remainder of the present letter is arranged as follows. In Section 2, some essential definitions about
fractional calculus and reproducing kernel spaces are recalled. The description of Quasi-Newton’s method
is given in Section 3. In Section 4, we simplify the reproducing kernel method to solve the linear equations
converted by the Quasi-Newton’s method. Numerical experiments are provided to verify the efficiency and re-
liability of the proposed technique in Section 5. Finally, we end this letter with a brief conclusion in Section 6.

2. Preliminaries

In this section, some basic concepts and preliminary definitions are introduced for our subsequent
development.

Definition 2.1. The fractional order α of function u(x), in Caputo’s sense, is defined as

Dαu(x) = 1
Γ (n− α)

 x
0

(x− t)n−α−1u(n)(t)dt,

where Γ (·) is Gamma function and n = [α] + 1, [α] denotes the greatest integer smaller than α.

Definition 2.2. Wm2 [0, 1] = {u(x)| um−1(x) is an absolutely continuous real value function in [0, 1], u(m)(x)
∈ L2[0, 1]}. The inner product is equipped by

⟨u(x), v(x)⟩ =
m−1
k=0

u(k)(0)v(k)(0) +
 1

0
u(m)(x)v(m)(x)dx.

From [10], it follows that W 4
2 [0, 1] and W 1

2 [0, 1] are reproducing kernel spaces and their kernels are denoted
as Rx(y) and rx(y) respectively.

3. The QNM for Eq. (3)

3.1. Fréchet derivative

Definition 3.1. Let F : X → Y , where X and Y are Banach spaces. Then a bounded and linear operator
A : X → Y is called a Fréchet derivative of F at u0 ∈ X if

lim
h→0

∥ F(u0 + h)−F(u0)−A(h) ∥Y
∥h∥X

= 0

for all h ∈ X, it is denoted by F ′(u0) commonly.

By Eq. (3), we define an operator F : W 4
2 [0, 1]→W 1

2 [0, 1], satisfying

F(u) = Dα(u) + p(x)N (u). (2)

Therefore, Eq. (3) can be converted into an operator equation as follows
F(u) = f(x), x ∈ [0, 1]
u(0) = λ0, u(1) = λ1, u′(0) = λ2.

(3)
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