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In this work, we investigate the (2+1)-dimensional two-component long wave–short
wave resonance interaction equations in a two-layer fluid. Through the Bell
polynomials, bilinear forms and mixed-type soliton solutions are derived. Such
soliton phenomena as the V-type solitons, two parallel solitons with the periodic
interaction, breather-type solitons and semi-breather-type solitons are observed, and
the relevant parameter conditions are presented.

© 2015 Published by Elsevier Ltd.

1. Introduction

Nowadays, theoretical and experimental studies on the solitons and relevant nonlinear evolution equations
(NLEEs) have been carried out due to their attraction and application in fluids, plasmas, optical fibers and
Bose–Einstein condensates [1–6]. Meanwhile, methods have been proposed to solve the NLEEs, e.g., the
inverse scattering transformation, Bäcklund transformation, Darboux transformation, Hirota method and
exponential function method [1,7–11].

In this work, through the Bell polynomials [12,13], we will analytically investigate the following
(2 + 1)-dimensional two-component long wave–short wave resonance interaction equations in a two-layer
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fluid [14–18]:
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where the subscripts respectively denote the partial derivatives with respect to the scaled space coordinates
x, y, and time t, S(1), S(2) and L respectively represent two short surface gravity packets and a long interfacial
gravity wave. Eqs. (1) can be used to describe the resonance interaction between a long interfacial gravity
wave and two short surface gravity packets propagating in a two-layer fluid [14–18]. Derivation for Eqs. (1)
and some bright soliton solutions for Eqs. (1) with σ = 1 or σ = −1 have been obtained [14–18]. Mixed-type
soliton solutions for the multicomponent generalization of Eqs. (1) with σ = 1 have been investigated [19].

However, to our knowledge, existing literature has not studied Eqs. (1) with the Bell polynomials, and
mixed-type soliton solutions for Eqs. (1) with σ = −1. Moreover, some mixed-type interactions for Eqs. (1)
have not been observed in the existing literature.

Therefore, in Section 2 of this work, through the Bell polynomials, bilinear form and mixed-type soliton
solutions for Eqs. (1) will be derived. Besides, a set of the conditions for the mixed-type two-soliton solutions
for Eqs. (1) with σ = −1 will be given. Section 3 will investigate the soliton interactions analytically and
graphically, and give the relevant parameter conditions for such soliton phenomena as the V-type solitons,
two parallel solitons propagation with the periodic interaction, breather-type solitons and semi-breather-type
solitons. Section 4 will be our conclusions.

2. Bilinear form and soliton solutions

In this section, through the Bell polynomials, we will analytically obtain the bilinear form and mixed-type
soliton solutions for Eqs. (1). Some concepts and formulas of the Bell polynomials are given in the Appendix.

2.1. Bilinear form via the Bell polynomials

Introducing the transformations

S(1) = eV1 , S(2) = eV2 , L = Qxx, (2)

where V1 and V2 are the complex differentiable functions with respect to x, y and t, and Q is a real one,
and substituting them into Eqs. (1), we have

i (V1, t + V1, y)− (V 2
1, x + V1, xx) +Qxx = 0, (3a)

i (V2, t + σV2, y)− (V 2
2, x + V2, xx) +Qxx = 0, (3b)

Qxt + 2λ− 2

eV1+V

∗
1 + eV2+V

∗
2


= 0, (3c)

with λ as a constant and ∗ as the complex conjugate. Via Expression (A.3), we need to set that

Vj, xx −Qxx =Wj, xx (j = 1, 2). (4)

Thus, Eqs. (1) can be transformed into the following form:

i [Yt(V1,W1) + Yy(V1,W1)]− Y2x(V1,W1) = 0, (5a)
i [Yt(V2,W2) + σYy(V2,W2)]− Y2x(V2,W2) = 0, (5b)

Vj, xt −Wj, xt + 2λ− 2

eV1+V

∗
1 + eV2+V

∗
2


= 0. (5c)
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