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a b s t r a c t

A nonlinear system with different anomalous diffusion terms is considered. The ex-
istence of global positive solutions is proved.
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1. Introduction

In this paper, we consider the following system of nonlinear fractional in space reaction–diffusion equations
ut(x, t) + ta(−∆)α u(x, t) = A(t) vr(x, t)us(x, t), x ∈ RN , t > 0,
vt(x, t) + tb(−∆)β v(x, t) = B(t) vp(x, t)uq(x, t), x ∈ RN , t > 0,

(1.1)

for u > 0, v > 0, equipped with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ RN , (1.2)

where the initial data

u0, v0 ∈ CLB(RN ) :=

φ ∈ C(RN ) : φ ≥ c > 0


,

are given functions, a > 0, b > 0, s < 0, p < 0, r < 1 − p and q < 1 − s. The functions A and B are such
that A(t) ≥ c0tk and B(t) ≥ c1tl where c0 > 0, c1 > 0, k > 0 and l > 0.
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Here the nonlocal operator (−∆)µ, 0 < µ ≤ 1(µ = α, β) stands for anomalous diffusion [1] and is defined,
for any function u in the Schwartz space, by the Fourier transform pair F and F−1

(−∆)µu(x) = F−1|ξ|2µFu(ξ)(x);
it has the Reisz representation

(−∆)µu(x) = CN,µPV


RN

u(x)− u(y)
|x− y|N+2µ dy,

where CN,µ is a normalizing constant depending only on N and µ [2], such that limµ→1−(−∆)µφ = −∆φ.
We will show that system (1.1)–(1.2) admits globally bounded solutions relying on a comparison argument.

Heat equations and systems have received a great attention concerning global existence and blow-up of
solutions; they are well documented and we only refer to the important books [3–6]. However, the work
on parabolic fractional differential equations is scarce and it started with the paper of Nagasawa and
Sirao [7] who used a probabilistic treatment of blowing-up solutions to equations with fractional powers
of the Laplacian of the form

ut + (−∆)αu = c(x) |u|p ,

for a certain positive function c(x). Sugitani [8] treated the same equation with c(x) = 1, while Kobayashi [9]
discussed a more general equation. Concerning systems of fractional in space differential equations, we can
mention the papers [10,11] and [12]. Kirane et al. [13] investigated a further extension to fractional in time
and space systems.

The system (1.1) when it pops up with positive exponents for the nonlinear terms appears in combus-
tion theory [3] while the cases for s = p = 0, r = −2 and q = −2 appear in the mathematical analysis
of micro-electromechanical systems (MEMS) and have important applications such as accelerometers for
airbag deployment in cars, inject printer heads, etc., for instance, see [14,15] and [16].

Our system has both positive and negative exponents even though the negative exponents do not pop up
as in the MEMS system.

2. Preliminaries

First of all, we recall some fundamental facts.
Let Sα(t) be the semi-group associated with the heat equation

ut + (−∆)αu = 0, 0 < α ≤ 1, t > 0, x ∈ RN .

It is known that Sα(t) defined by

Sα(t)(x) = 1
(2π)N2


RN
eixξ−t|ξ|

α

dξ

satisfies the following properties:

• Sα(t) ∈ L∞(RN ) ∩ L1(RN );
• Sα(t) ≥ 0 and


RN Sα(t)dx = 1, x ∈ RN , t > 0,

and the following estimates:

• ∥Sα(t) ∗ u0∥p ≤ ∥u0∥p, u0 ∈ Lp(RN ), 1 ≤ p ≤ ∞, t > 0;
• ∥Sα(t) ∗ u0∥q ≤ ct−

N
α ( 1
p−

1
q )∥u0∥p;

• ∥∇Sα(t)∥q ≤ ct−
N
α (1− 1

q )− 1
α for any u0 ∈ Lp(RN ), 1 ≤ p < q ≤ ∞, t > 0.
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