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first kind. Two direct approximate methods of solution are developed and utilized to
determine approximate solutions of the integral equation involved. The all important
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form analytical solution of the integral equation, giving rise to rather complicated
expressions involving Bessel functions.
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1. Introduction

Weakly singular integral equations of the first kind arise frequently in the research problems of various
fields of mathematical physics [1-3]. Several analytical and numerical methods have been devised to
determine solutions to this type of integral equations [4-7]. Here we propose two numerical methods to
solve a weakly singular integral equation connected with a special mixed boundary value problem arising in
the study of water wave scattering by a thin partially immersed barrier in deep water. This problem was
first solved analytically by Ursell [8] by reducing it to a first kind singular integral equation of the form
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where K is a constant.
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That the integral is interpreted in the sense of Cauchy principal value, is represented by ‘—’ sign on the
integral. The unknown function f(y) which represents the fluid velocity along the line below the thin plate
behaves as f(t) ~ O (|t —a|~2) as t — a. The integral Eq. (1) was solved by Ursell [8] analytically and the
reflection and the transmission coefficients were determined in terms of Bessel functions.

This problem was also solved by Williams [9] through a weakly singular integral equation approach.
Variants of Williams’ method were developed by Chakrabarti [10,11]. If the water depth is finite, it is
not possible to obtain the exact solution and researchers employed different methods to obtain numerical
estimates for the physical quantities. Some of the notable research work in this direction are found in Parsons
and Martin [12], Abul-Azm [13], Porter and Evans [14]. As the number of problems with exact solutions is
quite limited, with the advent of high speed computers, researchers are involved in developing algorithms with
faster rate of convergence. In our present work, we make an effort to solve Ursell’s problem by reducing it to
a non-homogeneous first kind integral equation and solving it by polynomial approximations of the unknown
function together with collocation at suitable points. In order to achieve this, we first reduce the governing
boundary value problem in terms of a first kind non-homogeneous integral equation for determining the
velocity function across the vertical line below the thin barrier. Using the behaviour of the velocity at the
end point of the plate and at infinity, the unknown velocity is represented as a product of a known elementary
function and an unknown smooth function. Two different ways of approximating the smooth function give
rise to two different methods. In the first approach the function is expressed to an unknown polynomial of
degree N. This polynomial is substituted into the integral equation and the free variable is collocated at
the finite number of points by the zeros of Chebyshev polynomial of the second kind. The second approach
consists of approximating the unknown function by an unknown series of Chebyshev polynomials. Both
the procedures yield systems of linear algebraic equations when collocated at finite number of points. The
linear systems are solved to determine the discrete numerical values of the unknown function. Using these
values the reflection coefficient is determined numerically. Graphical representation of the reflection curve
reveals that the results exactly coincide with those of Ursell [8]. Thus the current analysis presents two
simple techniques for solving a first kind integral equation in which the unknown function has prescribed
end behaviour. As a test, the methods have been employed to solve a problem whose exact solution is well
established in the literature. The methods are quite general and can be employed to problems for which
analytical solutions do not exist.

2. Mathematical formulation

Making the usual assumptions of linearized theory of water waves, the boundary value problem for the
governing velocity potential ¢(z,y) is described by the following equations (cf. Mandal and Chakrabarti [15])

V2¢ =0 in the fluid region, (2)

along with the free surface boundary condition

0
K¢+a—§:0 ony =0, (3)
the condition on the barrier
¢
— =0, 4
I (4)

and the boundary condition on the bottom

Vo —0 asy— oo (5)
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