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a b s t r a c t

In this paper we will prove that the eigenvalues of nonhomogeneous hinged vibrating
rods have a strongly continuous dependence on weights, i.e., as nonlinear functionals
of weights, eigenvalues are continuous in weights with respect to the weak topologies
in the Lebesgue spaces Lp.
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1. Introduction

Motivated by extremal problems of weighted eigenvalues, we will prove in this paper that the eigenvalues of
nonhomogeneous hinged vibrating rods have a strongly continuous dependence on weights, i.e., as nonlinear
functionals of weights, eigenvalues are continuous in weights with respect to the weak topologies in the
Lebesgue spaces Lp.

For 1 ≤ p ≤ ∞, let Lp := Lp([0, 1],R) be the Lebesgue space with the Lp norm denoted by
∥ · ∥p = ∥ · ∥Lp[0,1]. Denote

Lp+ :=

µ ∈ Lp : µ(x) ≥ 0 a.e. x ∈ [0, 1], and

 1

0
µ(x)dx > 0


.

Let ρ ∈ Lp+, called a weight. We are concerned with the eigenvalues of nonhomogeneous hinged vibrating
rods

y(4)(x)− λρ(x)y(x) = 0, x ∈ [0, 1], (1.1)
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with the boundary condition

y(0) = y(1) = 0 = y′′(0) = y′′(1). (1.2)

It is well-known that problem (1.1)–(1.2) has a sequence of (real) eigenvalues

0 < λ1(ρ) < λ2(ρ) < · · · < λm(ρ) < · · ·

such that limm→∞ λm(ρ) = +∞, see [1].
We say that ρn → ρ in (Lp, wp), if 1

0
ρnv dx→

 1

0
ρv dx ∀v ∈ Lp

∗
,

where p∗ = p/(p−1) is the conjugate exponent of p. A functional f : Lp → R is said to be strongly continuous
if f : (Lp, wp) → R is continuous. Evidently, strong continuity of f implies that f : (Lp, ∥ · ∥p) → R is
continuous.

The main result of this paper is the following strong continuity of λm(ρ) in ρ.

Theorem 1.1. For each m ∈ N, as a nonlinear functional, λm(ρ) is strongly continuous in ρ ∈ Lp+, where
1 ≤ p ≤ ∞.

In papers [2–5], the authors used the argument method to show that eigenvalues of the second order
operators have a strongly continuous dependence on potentials. These strong continuity results have been
applied to solve several interesting extremal problems and optimal estimations for the corresponding
eigenvalues in papers [6,7]. In this paper, we will study the dependence of eigenvalues of the fourth order
equation by the variational characterization of eigenvalues, which is a totally different approach from the case
of the second order equation. Based on the continuity results of this paper, we will study some minimization
problems of the corresponding eigenvalues in the further work.

2. Preliminary results

Given ρ ∈ Lp+, where 1 ≤ p ≤ ∞, and λ ∈ R. Let ϕi(x, λ, ρ) be the fundamental solution of Eq. (1.1)
satisfying

(y(0), y′(0), y′′(0), y′′′(0))T = ei,

where 1 ≤ i ≤ 4. Results in [2,5] show that solutions of (1.1) have strongly continuous dependence on
weights ρ.

Lemma 2.1. As nonlinear operators, the following solution mappings

R× (Lp, wp)→ (C3, ∥ · ∥C3), (λ, ρ)→ ϕi(·, λ, ρ), (2.1)

are continuous, where 1 ≤ i ≤ 4. Here C3 := C3([0, 1],R).

As for the first eigenvalue λ1(ρ), one has the following minimization characterization.

Lemma 2.2 ([1]). There holds

λ1(ρ) = min
u∈C2

0
u̸=0

 1
0 (u′′)2 dx 1
0 ρu

2 dx
, (2.2)

where

C2
0 :=

u ∈ C2([0, 1],R) : u(0) = u(1) = u′′(0) = u′′(1) = 0


.
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