Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Smooth solution of a nonlocal Fokker–Planck equation associated with stochastic systems with Lévy noise

Ming Wang^{a,1}, Jinqiao Duan^{b,*}

^a School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China ^b Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

ABSTRACT

ARTICLE INFO

Article history: Received 4 January 2016 Received in revised form 26 February 2016 Accepted 27 February 2016 Available online 7 March 2016

Keywords: Fractional Laplacian operator Non-Gaussian Lévy noise Nonlocal Fokker–Planck equation Stochastic dynamical systems

1. Introduction

We consider the following nonlocal Fokker–Planck equation defined on \mathbf{R}^n

$$\begin{cases} u_t + \Lambda^{\alpha} u + \nabla \cdot (\boldsymbol{a}(x)u) = 0, \\ u(0, x) = u_0(x), \end{cases}$$
(1.1)

where $\boldsymbol{a}: \mathbf{R}^n \mapsto \mathbf{R}^n$ is a time independent function (called 'drift'). The fractional Laplacian $\Lambda^{\alpha}, \alpha \in (0, 2)$, is defined by

$$\Lambda^{\alpha}f(x) = c_{\alpha,n}P.V.\int_{\mathbf{R}^n} \frac{f(x) - f(y)}{|x - y|^{n + \alpha}} dy,$$
(1.2)

where $c_{\alpha,n}$ is a constant depending only on n and α .

Corresponding author.

 $^1\,$ Tel.: +86 027 67883091.

http://dx.doi.org/10.1016/j.aml.2016.02.023 0893-9659/© 2016 Elsevier Ltd. All rights reserved.

It is shown that the solution of a nonlocal Fokker–Planck equation is smooth with respect to both time and space variable whenever the divergence of the smooth drift has a lower bound.

© 2016 Elsevier Ltd. All rights reserved.

Applied Mathematics

Letters

E-mail addresses: mwangcug@outlook.com (M. Wang), duan@iit.edu (J. Duan).

If $\boldsymbol{a}(x)$ is bounded, the existence and regularity of solutions for (1.1) was studied in [1]. Moreover, if $\boldsymbol{a}(x)$ belongs to some Kato class, the heat kernel of the semigroup generated by the operator $\Lambda^{\alpha} + \nabla \cdot (\boldsymbol{a} \cdot)$ was obtained in [2,3]. In these works, the drift $\boldsymbol{a}(x)$ is required to satisfy the following condition

$$\sup_{x \in \mathbf{R}^n} \int_{B(x,1)} |\boldsymbol{a}(x)| dx < \infty, \tag{1.3}$$

where B(x, r) denotes the ball centered at x with radius r.

Eq. (1.1) is the Fokker–Planck for a stochastic differential equation with a random source denoted by \widehat{X}_t and a drift term given by a deterministic function a(x):

$$dX_t = \boldsymbol{a}(X_t)dt + d\widehat{X_t},\tag{1.4}$$

where \widehat{X}_t is the α -stable Lévy process, and the solution of (1.1) is the probability density of X_t , see e.g. [4,5]. Some important drifts, such as Ornstein–Uhlenbeck drift a(x) = -x and double well drift $a(x) = x - x^3$ in dimension 1, do not belong to the class determined by (1.3). Thus, it is natural to consider Eq. (1.1) with drifts growing at infinity.

In [6], Xie et al. showed that the solution of Eq. (1.1) is smooth in the case a(x) = -x. The proof relies on the following formula of the solution

$$u(t,x) = \int_{\mathbf{R}^n} e^{nt} K\left(\frac{1-e^{-\alpha t}}{\alpha}, e^{-t}x, y\right) u_0(y) dy,$$

where K(t, x, y) is the integral kernel of the heat semigroup $e^{-t\Lambda^{\alpha}}$ (see [7]).

However, no precise presentation of the solution for Eq. (1.1) with general drift a(x) is available yet. In this paper, we overcome the difficulty to show the solution is smooth for a class of smooth drifts.

Theorem 1.1. Assume that $0 < \alpha < 2, u_0 \in L^2(\mathbf{R}^n)$, $\mathbf{a}(x) \in C^{\infty}(\mathbf{R}^n)$ and $div \mathbf{a}(x) \ge c$ for some constant $c \in \mathbf{R}$. Then Eq. (1.1) has a unique solution $u \in C^{\infty}((0, \infty) \times \mathbf{R}^n)$.

We give some remarks on Theorem 1.1. In dimension 1, Theorem 1.1 holds if $a(x) = x^3 - x$. Also, the solution of (1.1) is shown to be Hölder continuous if the drift is Hölder continuous, see e.g. [8–10]. Our proof is different from these works. Finally, the restriction $diva(x) \ge c$ is only used in the existence of solution. Whether it can be removed is an open problem.

2. Two commutator estimates

Let $b(x,\xi)$ be a continuous function on $\mathbb{R}^n \times \mathbb{R}^n$. Define the pseudo-differential operator

$$b(x,D)f(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} e^{i\langle x,\xi\rangle} b(x,\xi)\widehat{f}(\xi)d\xi, \quad f \in \mathscr{S}(\mathbf{R}^n),$$

where $D = \frac{1}{i}(\partial_{x_1}, \ldots, \partial_{x_n})$, \hat{f} is the Fourier transform given by $\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-i\langle x,\xi\rangle} f(x)dx$, $\mathscr{S}(\mathbf{R}^n)$ is the Schwartz class. We call $b(x,\xi)$ the symbol of b(x,D). In particular, let $b(x,\xi) = |\xi|^{\alpha}$ and $(1+|\xi|^2)^{s/2}$, we obtain Λ^{α} and $J_s = (1-\Delta)^{s/2}$ ($s \in \mathbf{R}$), respectively. The Sobolev spaces $H^s(\mathbf{R}^n)$ are defined as the completion of Schwartz space with respect to the norm $||f||_{H^s} = ||J_s f||_{L^2}$. Let $\varphi \in C_0^{\infty}(\mathbf{R}^n)$, it is easy to see that for all $s \in \mathbf{R}$

$$\|\varphi f\|_{H^s} \le C \|f\|_{H^s}.$$
 (2.5)

Let $m \in \mathbf{R}$. We say a function $b(x,\xi)$ belongs to S^m if for all μ_1, μ_2

$$\partial_{\xi}^{\mu_1} \partial_x^{\mu_2} b(x,\xi) | \le C_{\mu_1,\mu_2} (1+|\xi|)^{m-|\mu_1|}, \quad x,\xi \in \mathbf{R}^n.$$

We recall the following important properties of S^m , see e.g. [11, p. 251].

Download English Version:

https://daneshyari.com/en/article/1707526

Download Persian Version:

https://daneshyari.com/article/1707526

Daneshyari.com