Contents lists available at [ScienceDirect](http://www.sciencedirect.com)

Applied Mathematics Letters

www.elsevier.com/locate/aml

Smooth solution of a nonlocal Fokker–Planck equation associated with stochastic systems with Lévy noise

Ming Wang^{[a,](#page-0-0)[1](#page-0-1)}, Jinqiao Duan^{[b,](#page-0-2)*}

^a *School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei, 430074, China* ^b *Department of Applied Mathematics, Il linois Institute of Technology, Chicago, IL 60616, USA*

a r t i c l e i n f o

Article history: Received 4 January 2016 Received in revised form 26 February 2016 Accepted 27 February 2016 Available online 7 March 2016

Keywords: Fractional Laplacian operator Non-Gaussian Lévy noise Nonlocal Fokker–Planck equation Stochastic dynamical systems

1. Introduction

We consider the following nonlocal Fokker–Planck equation defined on \mathbb{R}^n

$$
\begin{cases} u_t + \Lambda^\alpha u + \nabla \cdot (\mathbf{a}(x)u) = 0, \\ u(0, x) = u_0(x), \end{cases}
$$
\n(1.1)

where $\mathbf{a}: \mathbf{R}^n \mapsto \mathbf{R}^n$ is a time independent function (called 'drift'). The fractional Laplacian $\Lambda^{\alpha}, \alpha \in (0, 2)$, is defined by

$$
\Lambda^{\alpha} f(x) = c_{\alpha,n} P.V. \int_{\mathbf{R}^n} \frac{f(x) - f(y)}{|x - y|^{n + \alpha}} dy,
$$
\n(1.2)

where $c_{\alpha,n}$ is a constant depending only on *n* and α .

Corresponding author.

E-mail addresses: mwangcug@outlook.com (M. Wang), duan@iit.edu (J. Duan).

 $^{\rm 1}$ Tel.: +86 027 67883091.

<http://dx.doi.org/10.1016/j.aml.2016.02.023> 0893-9659/© 2016 Elsevier Ltd. All rights reserved.

a b s t r a c t

It is shown that the solution of a nonlocal Fokker–Planck equation is smooth with respect to both time and space variable whenever the divergence of the smooth drift has a lower bound.

© 2016 Elsevier Ltd. All rights reserved.

If $a(x)$ is bounded, the existence and regularity of solutions for [\(1.1\)](#page-0-4) was studied in [\[1\]](#page--1-0). Moreover, if $a(x)$ belongs to some Kato class, the heat kernel of the semigroup generated by the operator $\Lambda^{\alpha} + \nabla \cdot (\boldsymbol{a})$ was obtained in [\[2,](#page--1-1)[3\]](#page--1-2). In these works, the drift $a(x)$ is required to satisfy the following condition

$$
\sup_{x \in \mathbf{R}^n} \int_{B(x,1)} |\mathbf{a}(x)| dx < \infty,\tag{1.3}
$$

where $B(x, r)$ denotes the ball centered at x with radius r.

Eq. [\(1.1\)](#page-0-4) is the Fokker–Planck for a stochastic differential equation with a random source denoted by \widehat{X}_t and a drift term given by a deterministic function $a(x)$:

$$
dX_t = \mathbf{a}(X_t)dt + d\tilde{X}_t, \tag{1.4}
$$

where \widehat{X}_t is the *α*-stable Lévy process, and the solution of [\(1.1\)](#page-0-4) is the probability density of X_t , see e.g. [\[4,](#page--1-3)[5\]](#page--1-4). Some important drifts, such as Ornstein–Uhlenbeck drift $a(x) = -x$ and double well drift $a(x) = x - x^3$ in dimension 1, do not belong to the class determined by (1.3) . Thus, it is natural to consider Eq. (1.1) with drifts growing at infinity.

In [\[6\]](#page--1-5), Xie et al. showed that the solution of Eq. [\(1.1\)](#page-0-4) is smooth in the case $a(x) = -x$. The proof relies on the following formula of the solution

$$
u(t,x) = \int_{\mathbf{R}^n} e^{nt} K\left(\frac{1 - e^{-\alpha t}}{\alpha}, e^{-t} x, y\right) u_0(y) dy,
$$

where $K(t, x, y)$ is the integral kernel of the heat semigroup $e^{-t\Lambda^{\alpha}}$ (see [\[7\]](#page--1-6)).

However, no precise presentation of the solution for Eq. (1.1) with general drift $a(x)$ is available yet. In this paper, we overcome the difficulty to show the solution is smooth for a class of smooth drifts.

Theorem 1.1. Assume that $0 < \alpha < 2, u_0 \in L^2(\mathbb{R}^n)$, $a(x) \in C^{\infty}(\mathbb{R}^n)$ and $div a(x) \ge c$ for some constant $c \in \mathbf{R}$ *. Then Eq.* [\(1.1\)](#page-0-4) *has a unique solution* $u \in C^{\infty}((0,\infty) \times \mathbf{R}^n)$ *.*

We give some remarks on [Theorem 1.1.](#page-1-1) In dimension 1, [Theorem 1.1](#page-1-1) holds if $a(x) = x^3 - x$. Also, the solution of (1.1) is shown to be Hölder continuous if the drift is Hölder continuous, see e.g. $[8-10]$. Our proof is different from these works. Finally, the restriction $div\mathbf{a}(x) \geq c$ is only used in the existence of solution. Whether it can be removed is an open problem.

2. Two commutator estimates

Let $b(x,\xi)$ be a continuous function on $\mathbb{R}^n \times \mathbb{R}^n$. Define the pseudo-differential operator

$$
b(x,D)f(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} e^{i\langle x,\xi\rangle} b(x,\xi) \widehat{f}(\xi) d\xi, \quad f \in \mathscr{S}(\mathbf{R}^n),
$$

where $D = \frac{1}{i}(\partial_{x_1}, \dots, \partial_{x_n}), \hat{f}$ is the Fourier transform given by $\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-i\langle x, \xi \rangle} f(x) dx$, $\mathscr{S}(\mathbf{R}^n)$ is the Schwartz class. We call $b(x,\xi)$ the symbol of $b(x,D)$. In particular, let $b(x,\xi) = |\xi|^{\alpha}$ and $(1+|\xi|^2)^{s/2}$, we obtain Λ^{α} and $J_s = (1 - \Delta)^{s/2}$ ($s \in \mathbf{R}$), respectively. The Sobolev spaces $H^s(\mathbf{R}^n)$ are defined as the completion of Schwartz space with respect to the norm $||f||_{H^s} = ||J_s f||_{L^2}$. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, it is easy to see that for all $s \in \mathbf{R}$

$$
\|\varphi f\|_{H^s} \le C \|f\|_{H^s}.\tag{2.5}
$$

Let $m \in \mathbb{R}$. We say a function $b(x, \xi)$ belongs to S^m if for all μ_1, μ_2

$$
|\partial_{\xi}^{\mu_1} \partial_x^{\mu_2} b(x,\xi)| \le C_{\mu_1,\mu_2} (1+|\xi|)^{m-|\mu_1|}, \quad x,\xi \in \mathbf{R}^n.
$$

We recall the following important properties of S^m , see e.g. [\[11,](#page--1-8) p. 251].

Download English Version:

<https://daneshyari.com/en/article/1707526>

Download Persian Version:

<https://daneshyari.com/article/1707526>

[Daneshyari.com](https://daneshyari.com)