Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

On a result by Dennis and Schnabel for Newton's method: Further improvements

Ioannis K. Argyros^a, Santhosh George^{b,*}

^a Cameron University, Department of Mathematical Sciences, Lawton, OK 73505, USA
 ^b Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, India

ones.

ABSTRACT

ARTICLE INFO

Article history: Received 20 October 2015 Received in revised form 3 December 2015 Accepted 4 December 2015 Available online 8 December 2015

Keywords: Newton's method Dennis and Schnabel Local convergence Order of convergence

1. Introduction

Problems from applied sciences can be written as an equation using Mathematical Modelling of the form

$$F(x) = 0, \tag{1.1}$$

We improve local convergence results for Newton's method by defining a more pre-

cise domain where the Newton iterates lie than in earlier studies using Dennis and

Schnabel-type techniques. A numerical example is presented to show that the new

convergence radii are larger and new error bounds are more precise than the earlier

where F is an operator defined on a convex subset Ω of a Banach space B_1 with values in a Banach space B_2 .

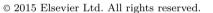
The most popular iterative method for solving equations is undoubtedly Newton's method

$$x_{n+1} = x_n - [F'(x_n)]^{-1} F(x_n), \quad \text{for each } n = 0, 1, 2, \dots,$$
(1.2)

where x_0 is an initial point. We refer the reader to [1-7] and the references there in for local as well as semilocal results for Newton's method. In particular an elegant local result was given by Dennis and Schnabel in [8], for Newton's method. The sufficient convergence conditions are:

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.aml.2015.12.003 \\ 0893-9659/@ 2015 Elsevier Ltd. All rights reserved.$



E-mail addresses: iargyros@cameron.edu (I.K. Argyros), sgeorge@nitk.ac.in (S. George).

(H₁) Let x^* be a solution of Eq. (1.1) such that the operator $[F'(x^*)]^{-1}$ exists, $B(x^*, r) \subset \Omega$ and $\|[F'(x^*)]^{-1}\| \leq \gamma$, with $r, \gamma > 0$, (H₂) $\|F''(x)\| \leq M$ for $x \in \Omega$.

Dennis and Schnabel proved under (H_1) and (H_2) , that for any starting point in $B(x^*,\varepsilon)$, where $\varepsilon = \min\{r, R\}$ and $R = \frac{1}{2\gamma M}$, Newton's method is convergent. The local results provide what we call ball of convergence, $B(x^*,\varepsilon)$. From the value ε , this ball of convergence gives information about the accessibility of the solution x^* of the equation to solve by the iterative method considered to approximate x^* . In [9], they presented a generalization of (H_2) that consists of considering the condition $\|F''(x)\| \leq \omega(\|x\|), x \in \Omega$, where $\omega : [0, +\infty) \to \mathbb{R}$ is a non-decreasing continuous function such that $\omega(0) \geq 0$. In this paper, we present a generalization of the previous condition but in affine invariant form to high order derivatives of the operator F; in particular, we suppose that

$$\|[F'(x^*)]^{-1}(F'(x) - F'(x^*))\| \le \omega_0(\|x - x^*\|), \quad x \in \Omega.$$
(1.3)

Let $R^* = \sup\{t \in [0, +\infty) : w_0(t) < 1\}$. Moreover, suppose that for each $x \in U(x^*, R^*) \cap \Omega$

$$\|[F'(x^*)]^{-1}F^{(k)}(x)\| \le \omega(\|x\|), \quad k \ge 3,$$
(1.4)

where $\omega, \omega_0 : [0, +\infty) \to \mathbb{R}$ are non-decreasing continuous functions such that $\omega(0) \ge 0$ and $\omega_0(0) \ge 0$. The advantages of presenting the results in affine instead of non-affine invariant form are well known (see, e.g. [2]). As already noted in [9,10] an interesting situation is given when (1.1) is a polynomial equation of degree k, since the operator $F^{(k)}(x)$ is such that $\|[F'(x^*)]^{-1}F^{(k)}(x)\| \le M$, $x \in \Omega$, and consequently $[F'(x^*)]^{-1}F^{(k)}(x)$ always satisfies conditions (1.4) and (1.3). Even, for more general equations, by using Taylor's series, Eq. (1.1) can be approximated by polynomial equations.

In [10], Argyros and González used condition (2.5) to improve the results in [8,9]. In the present study we improve the earlier results even further. In particular, we show that the new convergence radii are larger than the earlier ones [8–10]. Moreover, the new error bounds are also more precise. It is noticing that the improvements are made under the same computational cost as before [8–10].

The paper is organized as follows: in Section 2, we prove a new local convergence result for Newton's method. In Section 3, we present an example to show the advantages of the new approach.

2. Local convergence and order of convergence

We obtain a new local convergence result for Newton's method when the operator F satisfies conditions (1.3) and (1.4). For this, we follow a similar idea to that given in [10].

Theorem 2.1. Let $F : \Omega \subseteq B_1 \to B_2$ be a nonlinear $k \ (k \geq 3)$ times continuously differentiable operator on a non-empty open convex domain Ω of a Banach space B_1 with values in a Banach space B_2 . Let x^* be a solution of F(x) = 0 such that the operator $[F'(x^*)]^{-1}$ exists, $B(x^*, r) \subseteq \Omega$ and $\|F'(x^*)^{-1}F^{(i)}(x^*)\| \leq \alpha_i$ (for i = 2, 3, ..., k - 1) with $r, \alpha_i > 0$. Suppose that conditions (1.3) and (1.4) are satisfied and there exists the smallest positive zero R_0 of the equation

$$\frac{k-1}{k} \left(\sum_{i=1}^{k-2} \frac{\alpha_{i+1}}{i!} t^{i-1} + \frac{t^{k-2}}{(k-1)!} \omega(\|x^*\| + t) \right) t + \omega_0(t) - 1 = 0.$$
(2.1)

Then, there exists $\varepsilon > 0$ such that Newton's sequence $\{x_n\}$ is well-defined and converges to x^* for every $x_0 \in B(x^*, \varepsilon)$. Moreover, the following error bounds hold

$$\|x^* - x_n\| \le \beta \|x^* - x_{n-1}\| \tag{2.2}$$

Download English Version:

https://daneshyari.com/en/article/1707538

Download Persian Version:

https://daneshyari.com/article/1707538

Daneshyari.com