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1. Introduction and preliminaries

In this paper, we consider the quadratic matrix equation (QME) of the form
X?-EX-F=0, (1)

where E, F € R"*", E = diag(ey, e, ..., ey) is a diagonal matrix and F = (f;;) is a nonsingular M-matrix.
The QME of this special form is called M-QME. The study of M-QME is motivated by noisy Wiener—Hopf
problems for Markov chains, where a specific Q-matrix (-Q is an M-matrix) is needed to satisfy M-QME
(1), see [1,2] for more details.

[2] showed that M-QME (1) has a unique nonsingular M-matrix solution, which is of practical interest.
Some methods have been developed for solving M-QME by transforming it into an equivalent nonsymmetric
algebraic Riccati equation (NARE) to solve (see [2-4]). In this paper, our main aim is to develop a more
efficient transformation method.
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In the following, we first review some basic results on M-matrices and regular splitting.

For any matrices A = (a;5), B = (b;j) € R™™", we write A > B(A > B), if a;; > b;;(a;; > b;;) for all
i,7. A is called a Z-matrix if a;; < 0 for all ¢ # j. A Z-matrix A is called an M-matrix if there exists a
nonnegative matrix B such that A = sI — B and s > p(B). Here and in the following, p(C) denotes the
spectral radius of C. In particular A is called a nonsingular M-matrix if s > p(B) and singular M-matrix if
s = p(B). The following results on M-matrices can be found in [5,6].

Lemma 1.1. Let A be a Z-matriz, then the following statements are equivalent:
(1) A is a nonsingular M-matriz;

(2) There ezists a vector v > 0 such that Av > 0.

Lemma 1.2. If A is an irreducible nonsingular M-matriz, then A=! > 0.

Let A € R™*™ be a nonsingular matrix, then A = M — N is called a splitting of A if M is nonsingular; a
regular splitting if M is nonsingular, M~ > 0, and N > 0. The following lemma is a basic result for regular
splitting (see [6]).

Lemma 1.3. Let A = M; —N; = My— N> be two regular splittings of A, where A is nonsingular and A= > 0.
If Ny > Ny >0, then 1 > p(M;lNg) > p(Mlel) > 0. If, moreover, A=Y > 0 and if No > Ny > 0, equality
excluded, then 1 > p(My *Ny) > p(My ' Ny) > 0.

We now review some basic results on nonsymmetric algebraic Riccati equation (NARE)
XCX —-XD—-AX + B =0, (2)

where A, B, C' and D are real matrices of sizes m X m, m X n, n X m and n X n respectively. The NARE of
this kind appears in transport theory, Wiener—Hopf factorization of Markov chains and etc., for which one
can refer to [7,8,2,9] and the references therein. For the NARE (2), the solution of practical interest is its
(entrywise) minimal nonnegative solution.

Lemma 1.4 (/8]). From the NARE (2), we define an (m +n) x (m +n) matriz

D -C
M = . 3
(_ B A ) 3)
If M is a nonsingular M-matriz, then (2) has a unique minimal nonnegative solution S, and both D — CS

and A — CS are nonsingular M-matrices. Moreover, both D — CS and A — CS are irreducible when M is
an irreducible (singular or nonsingular) M-matriz.

There have been many effective methods proposed for solving numerically NARE (2) with M being an
M-matrix, see [7,3,8,10]. Among them, the fixed-point iteration is the simplest and feasible one.

To compute the M-matrix solution of M-QME (1), Guo in [2] turned it into a special NARE to solve by
the transformation

X=al Y. (4)

The motivational thought behind this is that many effective numerical methods for NARE can be fully
utilized for M-QME (1). In this paper, we use a more general transformation than (4) to expect to achieve
better effectiveness.

The rest of the paper is organized as follows. In Section 2, a new transformation is introduced to turn M-
QME (1) into a special NARE and theoretical analysis is given. In Section 3, the special NARE is solved by
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