Numerical methods for a quadratic matrix equation with a nonsingular M-matrix ${ }^{*}$

Linzhang Lu ${ }^{\text {a,b,* }}$, Zubair Ahmed ${ }^{\text {a }}$, Jinrui Guan ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematical Science, Xiamen University, China
${ }^{\mathrm{b}}$ School of Mathematics and Computer Science, Guizhou Normal University, China

A R T I C L E I N F O

Article history:

Received 6 July 2015
Received in revised form 12 August 2015
Accepted 12 August 2015
Available online 21 August 2015

Keywords:

Quadratic matrix equation
M-matrix
Nonsymmetric algebraic Riccati equation
Fixed-point iteration

Abstract

We consider numerical solution of a quadratic matrix equation associated with a nonsingular M-matrix (M-QME), which arises in study of noisy Wiener-Hopf problems for Markov chain. We first transform the M-QME to a nonsymmetric algebraic Riccati equation (NARE) of special form, and then solve this special NARE by fixed-point iteration. Theoretical analysis and numerical experiments show that our method is effective and efficient.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In this paper, we consider the quadratic matrix equation (QME) of the form

$$
\begin{equation*}
X^{2}-E X-F=0 \tag{1}
\end{equation*}
$$

where $E, F \in \mathbb{R}^{n \times n}, E=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a diagonal matrix and $F=\left(f_{i j}\right)$ is a nonsingular M-matrix. The QME of this special form is called M-QME. The study of M-QME is motivated by noisy Wiener-Hopf problems for Markov chains, where a specific Q-matrix (-Q is an M-matrix) is needed to satisfy M-QME (1), see $[1,2]$ for more details.
[2] showed that M-QME (1) has a unique nonsingular M-matrix solution, which is of practical interest. Some methods have been developed for solving M-QME by transforming it into an equivalent nonsymmetric algebraic Riccati equation (NARE) to solve (see [2-4]). In this paper, our main aim is to develop a more efficient transformation method.

[^0]In the following, we first review some basic results on M-matrices and regular splitting.
For any matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}$, we write $A \geq B(A>B)$, if $a_{i j} \geq b_{i j}\left(a_{i j}>b_{i j}\right)$ for all i, j. A is called a Z-matrix if $a_{i j} \leq 0$ for all $i \neq j$. A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that $A=s I-B$ and $s \geq \rho(B)$. Here and in the following, $\rho(C)$ denotes the spectral radius of C. In particular A is called a nonsingular M-matrix if $s>\rho(B)$ and singular M-matrix if $s=\rho(B)$. The following results on M-matrices can be found in $[5,6]$.

Lemma 1.1. Let A be a Z-matrix, then the following statements are equivalent:
(1) A is a nonsingular M-matrix;
(2) There exists a vector $v>0$ such that $A v>0$.

Lemma 1.2. If A is an irreducible nonsingular M-matrix, then $A^{-1}>0$.
Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix, then $A=M-N$ is called a splitting of A if M is nonsingular; a regular splitting if M is nonsingular, $M^{-1} \geq 0$, and $N \geq 0$. The following lemma is a basic result for regular splitting (see [6]).

Lemma 1.3. Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two regular splittings of A, where A is nonsingular and $A^{-1} \geq 0$. If $N_{2} \geq N_{1} \geq 0$, then $1>\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right) \geq 0$. If, moreover, $A^{-1}>0$ and if $N_{2} \geq N_{1} \geq 0$, equality excluded, then $1>\rho\left(M_{2}^{-1} N_{2}\right)>\rho\left(M_{1}^{-1} N_{1}\right)>0$.

We now review some basic results on nonsymmetric algebraic Riccati equation (NARE)

$$
\begin{equation*}
X C X-X D-A X+B=0, \tag{2}
\end{equation*}
$$

where A, B, C and D are real matrices of sizes $m \times m, m \times n, n \times m$ and $n \times n$ respectively. The NARE of this kind appears in transport theory, Wiener-Hopf factorization of Markov chains and etc., for which one can refer to $[7,8,2,9]$ and the references therein. For the NARE (2), the solution of practical interest is its (entrywise) minimal nonnegative solution.

Lemma 1.4 ([8]). From the NARE (2), we define an $(m+n) \times(m+n)$ matrix

$$
M=\left(\begin{array}{cc}
D & -C \tag{3}\\
-B & A
\end{array}\right)
$$

If M is a nonsingular M-matrix, then (2) has a unique minimal nonnegative solution S, and both $D-C S$ and $A-C S$ are nonsingular M-matrices. Moreover, both $D-C S$ and $A-C S$ are irreducible when M is an irreducible (singular or nonsingular) M-matrix.

There have been many effective methods proposed for solving numerically NARE (2) with M being an M-matrix, see $[7,3,8,10]$. Among them, the fixed-point iteration is the simplest and feasible one.

To compute the M-matrix solution of M-QME (1), Guo in [2] turned it into a special NARE to solve by the transformation

$$
\begin{equation*}
X=\alpha I-Y . \tag{4}
\end{equation*}
$$

The motivational thought behind this is that many effective numerical methods for NARE can be fully utilized for M-QME (1). In this paper, we use a more general transformation than (4) to expect to achieve better effectiveness.

The rest of the paper is organized as follows. In Section 2, a new transformation is introduced to turn MQME (1) into a special NARE and theoretical analysis is given. In Section 3, the special NARE is solved by

https://daneshyari.com/en/article/1707553

Download Persian Version:

https://daneshyari.com/article/1707553

Daneshyari.com

[^0]: Supported in part by National Natural Science Foundation of China grant 10261012 and 11428104.

 * Corresponding author at: School of Mathematical Science, Xiamen University, China.

 E-mail addresses: lzlu@xmu.edu.cn, llz@gznu.edu.cn (L. Lu).

