Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Numerical methods for a quadratic matrix equation with a nonsingular M-matrix $^{\bigstar}$

^a School of Mathematical Science, Xiamen University, China
 ^b School of Mathematics and Computer Science, Guizhou Normal University, China

ARTICLE INFO

Article history: Received 6 July 2015 Received in revised form 12 August 2015 Accepted 12 August 2015 Available online 21 August 2015

Keywords: Quadratic matrix equation M-matrix Nonsymmetric algebraic Riccati equation Fixed-point iteration

ABSTRACT

We consider numerical solution of a quadratic matrix equation associated with a nonsingular M-matrix (M-QME), which arises in study of noisy Wiener–Hopf problems for Markov chain. We first transform the M-QME to a nonsymmetric algebraic Riccati equation (NARE) of special form, and then solve this special NARE by fixed-point iteration. Theoretical analysis and numerical experiments show that our method is effective and efficient.

 \odot 2015 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In this paper, we consider the quadratic matrix equation (QME) of the form

$$X^2 - EX - F = 0, (1)$$

where $E, F \in \mathbb{R}^{n \times n}, E = diag(e_1, e_2, \dots, e_n)$ is a diagonal matrix and $F = (f_{ij})$ is a nonsingular M-matrix. The QME of this special form is called M-QME. The study of M-QME is motivated by noisy Wiener-Hopf problems for Markov chains, where a specific Q-matrix (-Q is an M-matrix) is needed to satisfy M-QME (1), see [1,2] for more details.

[2] showed that M-QME (1) has a unique nonsingular M-matrix solution, which is of practical interest. Some methods have been developed for solving M-QME by transforming it into an equivalent nonsymmetric algebraic Riccati equation (NARE) to solve (see [2–4]). In this paper, our main aim is to develop a more efficient transformation method.

Corresponding author at: School of Mathematical Science, Xiamen University, China. *E-mail addresses:* lzlu@xmu.edu.cn, llz@gznu.edu.cn (L. Lu).

 $^{^{}m in}$ Supported in part by National Natural Science Foundation of China grant 10261012 and 11428104.

In the following, we first review some basic results on M-matrices and regular splitting.

For any matrices $A = (a_{ij}), B = (b_{ij}) \in \mathbb{R}^{n \times n}$, we write $A \ge B(A > B)$, if $a_{ij} \ge b_{ij}(a_{ij} > b_{ij})$ for all i, j. A is called a Z-matrix if $a_{ij} \le 0$ for all $i \ne j$. A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that A = sI - B and $s \ge \rho(B)$. Here and in the following, $\rho(C)$ denotes the spectral radius of C. In particular A is called a nonsingular M-matrix if $s > \rho(B)$ and singular M-matrix if $s = \rho(B)$. The following results on M-matrices can be found in [5,6].

Lemma 1.1. Let A be a Z-matrix, then the following statements are equivalent:

- (1) A is a nonsingular M-matrix;
- (2) There exists a vector v > 0 such that Av > 0.

Lemma 1.2. If A is an irreducible nonsingular M-matrix, then $A^{-1} > 0$.

Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix, then A = M - N is called a splitting of A if M is nonsingular; a regular splitting if M is nonsingular, $M^{-1} \ge 0$, and $N \ge 0$. The following lemma is a basic result for regular splitting (see [6]).

Lemma 1.3. Let $A = M_1 - N_1 = M_2 - N_2$ be two regular splittings of A, where A is nonsingular and $A^{-1} \ge 0$. If $N_2 \ge N_1 \ge 0$, then $1 > \rho(M_2^{-1}N_2) \ge \rho(M_1^{-1}N_1) \ge 0$. If, moreover, $A^{-1} > 0$ and if $N_2 \ge N_1 \ge 0$, equality excluded, then $1 > \rho(M_2^{-1}N_2) > \rho(M_1^{-1}N_1) > 0$.

We now review some basic results on nonsymmetric algebraic Riccati equation (NARE)

$$XCX - XD - AX + B = 0, (2)$$

where A, B, C and D are real matrices of sizes $m \times m$, $m \times n$, $n \times m$ and $n \times n$ respectively. The NARE of this kind appears in transport theory, Wiener–Hopf factorization of Markov chains and etc., for which one can refer to [7,8,2,9] and the references therein. For the NARE (2), the solution of practical interest is its (entrywise) minimal nonnegative solution.

Lemma 1.4 ([8]). From the NARE (2), we define an $(m+n) \times (m+n)$ matrix

$$M = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix}.$$
 (3)

If M is a nonsingular M-matrix, then (2) has a unique minimal nonnegative solution S, and both D - CSand A - CS are nonsingular M-matrices. Moreover, both D - CS and A - CS are irreducible when M is an irreducible (singular or nonsingular) M-matrix.

There have been many effective methods proposed for solving numerically NARE (2) with M being an M-matrix, see [7,3,8,10]. Among them, the fixed-point iteration is the simplest and feasible one.

To compute the M-matrix solution of M-QME (1), Guo in [2] turned it into a special NARE to solve by the transformation

$$X = \alpha I - Y. \tag{4}$$

The motivational thought behind this is that many effective numerical methods for NARE can be fully utilized for M-QME (1). In this paper, we use a more general transformation than (4) to expect to achieve better effectiveness.

The rest of the paper is organized as follows. In Section 2, a new transformation is introduced to turn M-QME (1) into a special NARE and theoretical analysis is given. In Section 3, the special NARE is solved by

Download English Version:

https://daneshyari.com/en/article/1707553

Download Persian Version:

https://daneshyari.com/article/1707553

Daneshyari.com