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We consider numerical solution of a quadratic matrix equation associated with a
nonsingular M-matrix (M-QME), which arises in study of noisy Wiener–Hopf prob-
lems for Markov chain. We first transform the M-QME to a nonsymmetric algebraic
Riccati equation (NARE) of special form, and then solve this special NARE by
fixed-point iteration. Theoretical analysis and numerical experiments show that our
method is effective and efficient.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In this paper, we consider the quadratic matrix equation (QME) of the form

X2 − EX − F = 0, (1)

where E, F ∈ Rn×n, E = diag(e1, e2, . . . , en) is a diagonal matrix and F = (fij) is a nonsingular M-matrix.
The QME of this special form is called M-QME. The study of M-QME is motivated by noisy Wiener–Hopf
problems for Markov chains, where a specific Q-matrix (-Q is an M-matrix) is needed to satisfy M-QME
(1), see [1,2] for more details.

[2] showed that M-QME (1) has a unique nonsingular M-matrix solution, which is of practical interest.
Some methods have been developed for solving M-QME by transforming it into an equivalent nonsymmetric
algebraic Riccati equation (NARE) to solve (see [2–4]). In this paper, our main aim is to develop a more
efficient transformation method.
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In the following, we first review some basic results on M-matrices and regular splitting.
For any matrices A = (aij), B = (bij) ∈ Rn×n, we write A ≥ B(A > B), if aij ≥ bij(aij > bij) for all

i, j. A is called a Z-matrix if aij ≤ 0 for all i ̸= j. A Z-matrix A is called an M-matrix if there exists a
nonnegative matrix B such that A = sI − B and s ≥ ρ(B). Here and in the following, ρ(C) denotes the
spectral radius of C. In particular A is called a nonsingular M-matrix if s > ρ(B) and singular M-matrix if
s = ρ(B). The following results on M-matrices can be found in [5,6].

Lemma 1.1. Let A be a Z-matrix, then the following statements are equivalent:

(1) A is a nonsingular M-matrix;

(2) There exists a vector v > 0 such that Av > 0.

Lemma 1.2. If A is an irreducible nonsingular M-matrix, then A−1 > 0.

Let A ∈ Rn×n be a nonsingular matrix, then A =M −N is called a splitting of A if M is nonsingular; a
regular splitting if M is nonsingular, M−1 ≥ 0, and N ≥ 0. The following lemma is a basic result for regular
splitting (see [6]).

Lemma 1.3. Let A =M1−N1 =M2−N2 be two regular splittings of A, where A is nonsingular and A−1 ≥ 0.
If N2 ≥ N1 ≥ 0, then 1 > ρ(M−1

2 N2) ≥ ρ(M−1
1 N1) ≥ 0. If, moreover, A−1 > 0 and if N2 ≥ N1 ≥ 0, equality

excluded, then 1 > ρ(M−1
2 N2) > ρ(M−1

1 N1) > 0.

We now review some basic results on nonsymmetric algebraic Riccati equation (NARE)

XCX −XD −AX +B = 0, (2)

where A, B, C and D are real matrices of sizes m×m, m× n, n×m and n× n respectively. The NARE of
this kind appears in transport theory, Wiener–Hopf factorization of Markov chains and etc., for which one
can refer to [7,8,2,9] and the references therein. For the NARE (2), the solution of practical interest is its
(entrywise) minimal nonnegative solution.

Lemma 1.4 ([8]). From the NARE (2), we define an (m+ n)× (m+ n) matrix

M =

D −C
−B A


. (3)

If M is a nonsingular M-matrix, then (2) has a unique minimal nonnegative solution S, and both D − CS
and A − CS are nonsingular M-matrices. Moreover, both D − CS and A − CS are irreducible when M is
an irreducible (singular or nonsingular) M-matrix.

There have been many effective methods proposed for solving numerically NARE (2) with M being an
M-matrix, see [7,3,8,10]. Among them, the fixed-point iteration is the simplest and feasible one.

To compute the M-matrix solution of M-QME (1), Guo in [2] turned it into a special NARE to solve by
the transformation

X = αI − Y. (4)

The motivational thought behind this is that many effective numerical methods for NARE can be fully
utilized for M-QME (1). In this paper, we use a more general transformation than (4) to expect to achieve
better effectiveness.

The rest of the paper is organized as follows. In Section 2, a new transformation is introduced to turn M-
QME (1) into a special NARE and theoretical analysis is given. In Section 3, the special NARE is solved by
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