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The purpose of this paper is an extension of Jacobi’s criteria for positive definiteness
of second variation of the simplest problems of calculus of variations subject to
mixed boundary conditions. Both non constrained and isoperimetric problems are
discussed. The main result is that if we stipulate conditions (21) and (22) then
Jacobi’s condition remains valid also for the mixed boundary conditions.
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1. Introduction

As it is well known [1–7] the simplest problem of the calculus of variations is to find a function y = y (x)
that minimize (or maximize) the functional

J [y] ≡
 b
a

F (x, y, y′) dx (1)

under Dirichlet boundary conditions

y (a) = A (fixed), y (b) = B (fixed) (2)

where function F and constants A and Bare given, ()′ ≡ d () /dx. For convenience we shall call this problem
the Dirichlet problem.

Note. In the paper we shall assume that for all the functions we are going to use the domain of definition
is the interval [a, b] and that they possess continuous derivatives with respect to all its arguments as many
order as needed, unless stated otherwise. We introduce a function by writing y = y (x)(as example) and in
the sequel use y to denote the function and y (x) to denote its value.
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Suppose that y is an extremal of J [y]. Then a sufficient condition for y to realize a weak minimum of
J [y] is that its second variation δ2J [h] is positive definite, that is, δ2J [h] > 0 for any piecewise smooth,
i.e., continuous and piecewise continuously differentiable, h = h (x) ̸≡ 0 such that

h (a) = 0, h (b) = 0. (3)

In this paper we will assume that δ2J [h] is given in the integrated form

δ2J [h] ≡ Rh2
b
a

+
 b
a


Ph′

2 +Qh2

dx (4)

where

P (x) ≡ ∂
2F

∂y′2
, Q (x) ≡ ∂

2F

∂y2
− dR
dx
, R (x) ≡ ∂

2F

∂y∂y′
. (5)

Here and in the sequel the partial derivatives are evaluated at (x, y, y′). We abbreviate the condition
δ2J [h] > 0 as δ2J > 0 to mean that it must be fulfilled for piecewise smooth function h = h (x) ̸≡ 0
which satisfies the constraints of the given variation problem. We will call such h an admissible variation.

Now the question under what conditions we have δ2J > 0, the answer is the following Jacobi’s theorem
(see for instance [1,4–6]).

Theorem 1 (Dirichlet Problem). In order that δ2J > 0 it is necessary and sufficient that the following
conditions hold:

1. P (x) > 0 for all a ≤ x ≤ b (strengthened Legendre condition)
2. u (x) ̸= 0 for all a < x ≤ b (strengthened Jacobi condition)

where u = u (x) is the solution of Jacobi’s accessory equation

L (u) ≡ − d
dx

(Pu′) +Qu = 0 (6)

which satisfies the initial conditions

u (a) = 0, u′ (a) = 1. (7)

Note that u′ (a) = 1 is only for sake of definiteness of u [5].
For a simplest isoperimetric problem y must beside boundary conditions (2) satisfy also the additional

condition  b
a

G (x, y, y′) dx = ℓ (8)

where ℓ is a given constant. In this case an extremal of the problem y is obtained from the functional

J [y] =
 b
a

H (x, y, y′) dx (9)

where H ≡ F + λG, λ is a Lagrange multiplier. The requirement for δ2J > 0 which is given by (4) and
where (5) is replaced by

P (x) ≡ ∂
2H

∂y′2
, Q (x) ≡ ∂

2H

∂y2
− dR
dx
, R (x) ≡ ∂

2H

∂y∂y′
(10)
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