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the existence and uniqueness of the solution are derived. 
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This work deals with the existence of positive ω-periodic solutions for the first order
neutral differential equation. The results are established using Krasnoselskii’s fixed
point theorem. An example is given to support the theory.
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1. Introduction

In the present work, we give new sufficient conditions for the existence of positive ω-periodic solutions of
the following first-order neutral differential equation

[x(t)− P (t)x(t− τ)]′ = −Q(t)x(t) + f(t, x(t− τ)), (1)

where Q ∈ C(R, (0,∞)), P ∈ C1(R,R), f ∈ C(R × R,R), τ > 0, and P,Q are ω-periodic functions, f is
ω-periodic with respect to first variable.

In recent years, there has been considerable interest in the existence of positive periodic solutions of first
order neutral differential equations. These equations appear in the blood cell production models, population
models and control models. In [1], existence of positive periodic solutions of the following neutral differential
equation

d

dt
[x(t)− cx(t− τ(t))] = −a(t)x(t) + f(t, x(t− τ(t))) (2)

were investigated when 0 6 c < 1 and −1 < c < 0. In the present paper, we have two main contributions
comparing with the existing results. First, instead of constant c we take variable coefficient P (t). Second, in
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addition to 0 6 P (t) < 1 and −1 < P (t) 6 0, we consider the ranges 1 < P (t) < ∞ and −∞ < P (t) < −1
for P (t), which are new in the literature. There are also some other studies dealing with positive solutions
of neutral differential equations, see, [2–6] and references therein. For related books, we refer the reader
to [7–11].

The following fixed point theorem will be used in proofs.

Lemma 1 (Krasnoselskii’s Fixed Point Theorem [10]). Let X be a Banach space, let Ω be a bounded closed
and convex subset of X and, let S1, S2 be maps of Ω into X such that S1x+S2y ∈ Ω for every pair x, y ∈ Ω .
If S1 is a contractive and S2 is completely continuous, then the equation

S1x+ S2x = x

has a solution in Ω .

2. Main results

Let Φ = {x(t) : x(t) ∈ C(R,R), x(t) = x(t + ω), t ∈ R} with the sup norm ∥x∥ = supt∈[0,ω] |x(t)|. It is
clear that Φ is a Banach space.

Theorem 1. Assume that 1 < p0 6 P (t) 6 p1 <∞ and that there exist constants m and M such that

(p1 − 1)m 6 P (t)x− f(t, x)
Q(t) 6 (p0 − 1)M, ∀(t, x) ∈ [0, ω]× [m,M ], m > 0. (3)

Then (1) has at least one positive ω-periodic solution x(t) ∈ [m,M ].

Proof. It is well known that to find an ω-periodic solution of (1) is equivalent to find an ω-periodic solution
of the integral equation

x(t) = 1
P (t+ τ)


x(t+ τ) +

 t+τ+ω
t+τ

G(t+ τ, s) [P (s)Q(s)x(s− τ)− f(s, x(s− τ))] ds

,

where

G(t, s) =
exp(
 s
t
Q(u)du)

exp(
 ω
0 Q(u)du)− 1

.

Let Ω = {x ∈ Φ : m 6 x(t) 6M, t ∈ [0, ω], 0 < m < M}. One can observe that Ω is a bounded, closed and
convex subset of Φ. We define two mappings S1, S2 : Ω → Φ as follows

(S1x)(t) = 1
P (t+ τ)

 t+τ+ω
t+τ

G(t+ τ, s) [P (s)Q(s)x(s− τ)− f(s, x(s− τ))] ds, (4)

(S2x)(t) = x(t+ τ)
P (t+ τ) . (5)

For any x ∈ Ω and t ∈ R, we have from (4) and (5) that

(S1x)(t+ ω) = 1
P (t+ τ + ω)

 t+τ+2ω

t+τ+ω
G(t+ τ + ω, s)


P (s)Q(s)x(s− τ)− f(s, x(s− τ))


ds

= 1
P (t+ τ + ω)

 t+τ+ω
t+τ

G(t+ τ + ω, u+ ω)

P (u+ ω)Q(u+ ω)x(u+ ω − τ)

− f(u+ ω, x(u+ ω − τ))

du
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