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a b s t r a c t

We discuss efficient methods for computing gradients in inverse problems for
estimation of distributions for individual parameters in models where only aggregate
or population level data is available. The ideas are illustrated with two examples
arising in applications.
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1. Introduction

For years even simple population models based on individual models (see, e.g., the Hare–Lynx models
[1, p. 30] and the bacterial growth and diffusion models [1, p. 33], [2], [3, p. 139]) have been based on
aggregate population level data for parameter estimation and validation. However, with increased interest
in uncertainty quantification and recognition that statistical models for the data collection procedures
drive uncertainty statements about the parameters in the underlying mathematical models, the interest
in determining correct statistical models as part of parameter estimation or inverse problems has grown.
Moreover, it is now recognized that aggregate data is widely (and frequently incorrectly) employed to
quantify uncertainty in individual models. This occurs in a ubiquitous range of applied problems including
food chemistry efforts [4–6], tracking of labeled substances in proliferating cell populations (e.g., Propagons or
prion seeds in amyloid growth in yeast [7–11]), as well as structured population models in marine population
studies such as those for mosquito fish [12] and shrimp [13]. In such individual models, one has a mathematical
model which describes the behavior of one “individual” which is characterized by a single parameter set which
must be estimated using population level or aggregate data.
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In a second class of problems (the aggregate model case), the dynamic mathematical models explicitly
depend upon a distribution that must be estimated using aggregate data. This is the case in electromagnetic
interrogation problems with a distribution of polarization permittivity and relaxation time parameters for
molecules [14–17], in HIV cellular models [18,19], and in wave propagation in viscoelastic materials [17,20,21].
Again in these examples, only aggregate data is available to estimate the embedded probability distributions.

One method for such non-parametric estimation problems of a probability measure is through the
Prohorov Metric Framework (PMF) [17,22] developed specifically to treat aggregate data problems (for
a summary see [17, Chapter 5]). The PMF provides a theoretical and computational framework in which to
estimate an unknown probability measure for which the space P(Ω) of probability measures over a compact
set Ω is approximated by a finite dimensional space PN (Ω) of dimension N . There are many choices for
the approximating space PN (Ω); two popular choices involve using a basis of Dirac measures (zero order
splines) or piecewise linear splines to approximate the distributions. In this presentation, our goal is to show
how the gradient of a least squares objective function can be found in a efficient manner for inverse problems
involving the estimation of a probability measure using the PMF.

2. Problem framework

We assume to have a mathematical model for a dynamical system which is dependent upon a probability
measure G as well as Euclidean parameters q ∈ Q. We assume that the solution to this system can be
obtained either analytically or numerically and denote the solution as u(x, t;G,q). Furthermore we assume
that we have a set of observations

yj = u(xj , tj ;G0,q0) + ϵj , j = 1, . . . , n,

where G0 and q0 are the true or nominal probability measure and parameters, respectively, and ϵj is a
realization of the measurement error in the observation process.

Given a set of observations yj at the points (xj , tj), j = 1, . . . , n, we would like to estimate the unknown
parameters q ∈ Q ⊂ Rκ and the unknown distribution G(θ) ∈ P(Ω), where P(Ω) is the set of admissible
probability measures on Ω ⊂ R. Thus, we would like to solve

(G,q) = arg min
(G,q)∈(P(Ω)×Q)

J(G,q), (2.1)

where

J(G,q) =
n
j=1

(yj − u(tj , xj ;G,q))2
. (2.2)

We note that (2.1) is an infinite-dimensional optimization problem. Thus, we need to approximate the
infinite dimensional space P(Ω) with a finite dimensional space PN (Ω) in order to have a computationally
tractable finite-dimensional optimization problem

( G, q) = arg min
(G,q)∈(PN (Ω)×Q)

J(G,q). (2.3)

We will consider two finite-dimensional spaces, PND (Ω) and PNS (Ω), to approximate P(Ω). The space PND
involves the use of Dirac measures, and the space PNS involves the use of piecewise linear splines. We define
these two spaces as

PND (Ω) =

G ∈ P(Ω)

 G =
N
m=1
αm∆zm , where αm ≥ 0 and

N
m=1
αm = 1


, (2.4)
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