Contents lists available at [ScienceDirect](http://www.sciencedirect.com)

Applied Mathematics Letters

www.elsevier.com/locate/aml

Blow-up phenomena for some nonlinear pseudo-parabolic equations

Xiaoming Peng, Yadong Shang [∗](#page-0-0) , Xiaoxiao Zheng

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, Guangdong, PR China

a r t i c l e i n f o

Article history: Received 7 November 2015 Received in revised form 6 December 2015 Accepted 7 December 2015 Available online 11 December 2015

Keywords: Lower bound Blow up Nonlinear pseudo-parabolic equation

a b s t r a c t

This paper considers the blow-up of solutions for equations

$$
u_t - \nu \triangle u_t = \operatorname{div}(\rho (|\nabla u|^2) \nabla u) + f(u)
$$

by means of a differential inequality technique. A lower bound for blow-up time is determined if blow-up does occur. Also, we establish a blow-up criterion and an upper bound for blow-up under some conditions. Moreover, conditions which ensure that blow-up cannot occur are presented. This result extends the results obtained by R. Xu (2007) and P. Luo (2015).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the initial–boundary value problem

$$
u_t - \nu \Delta u_t - \text{div}(\rho(|\nabla u|^2)\nabla u) = f(u) \quad \text{in } \Omega \times (0, T),
$$

\n
$$
u(x, t) = 0 \quad \text{on } \partial \Omega \times (0, T),
$$

\n
$$
u(x, 0) = u_0(x) \ge 0 \quad \text{in } \Omega,
$$
\n(1.1)

where $\Omega \subset R^n(n \geq 3)$ is a bounded domain with smooth boundary $\partial \Omega$.

It is known that for certain classes of functions ρ and f , the solution of (1.1) can fail to exist globally only if it blows up at some finite time *T*. Obviously, if $\nu = 0, \rho = 1$, then Eq. [\(1.1\)](#page-0-1) reduces to the heat equation with sources

$$
u_t - \Delta u = f(u). \tag{1.2}
$$

[∗] Corresponding author.

<http://dx.doi.org/10.1016/j.aml.2015.12.005> 0893-9659/© 2015 Elsevier Ltd. All rights reserved.

Applied
Mathematics Letters

E-mail address: gzydshang@126.com (Y. Shang).

For Eq. (1.2) , many results for blow-up of solutions have been obtained [\[1,](#page--1-0)[2\]](#page--1-1). In [\[3\]](#page--1-2) and [\[4\]](#page--1-3), Payne and Schaefer used a differential inequality technique to obtain a lower bound on blow-up time for Eq. (1.2) under homogeneous Dirichlet boundary conditions and homogeneous Neumann conditions, respectively. When nonlinear conditions are imposed on the boundary, lower bounds were also obtained in [\[5\]](#page--1-4) for Eq. [\(1.2\).](#page-0-2) In [\[6\]](#page--1-5), lower bounds for the blow-up time in a semilinear parabolic problem with a variable exponential source were derived.

If $\nu = 0$, then Eq. [\(1.1\)](#page-0-1) reduces to be the nonlinear parabolic equation

$$
u_t = \operatorname{div}(\rho(|\nabla u|^2)\nabla u) + f(u). \tag{1.3}
$$

Applying the differential inequality technique, the authors in [\[7\]](#page--1-6) derived a lower bound on blow-up time when blow-up does occur, exhibited criteria which imply that blow-up cannot occur, and presented a sufficient condition for blow-up to occur. For nonlinear boundary condition case, the reader can refer to [\[8\]](#page--1-7) for details. For a more general equation with time dependent coefficients which can be transformed into the form of (1.3) , one can see [\[9\]](#page--1-8).

If $\nu = 1, \rho = 1$, then Eq. [\(1.1\)](#page-0-1) reduces to be the pseudo-parabolic equation

$$
u_t - \Delta u - \Delta u_t = f(u),\tag{1.4}
$$

which have been extensively investigated $[10-15]$. Especially, Xu $[14]$ proved that there are solutions that blow up in finite time *T* in $H_0^1(\Omega)$ -norm and Luo [\[15\]](#page--1-11) obtained a lower bound in $H_0^1(\Omega)$ -norm.

As far as we know, there is little information on the bounds for blow up time to problem [\(1.1\).](#page-0-1) Inspired by [\[8](#page--1-7)[,15\]](#page--1-11), here we consider the initial–boundary problem [\(1.1\)](#page-0-1) and give some results for this problem. A lower bound for blow up time is determined if the solution blows up in finite time. Also, we establish a blow-up criterion and an upper bound for blow-up time under some conditions as well as a nonblow-up. Our results extend the recent results obtained by R. Xu [\[12\]](#page--1-12) and P. Luo [\[15\]](#page--1-11). In detail, this paper is organized as follows: in Section [2,](#page-1-1) we give nonblow-up case; in Section [3,](#page--1-13) we determine a lower bound for blow up time to the initial–boundary problem [\(1.1\)](#page-0-1) under some conditions; in Section [4,](#page--1-14) we obtain a sufficient condition which guarantees that blow-up occurs at some finite time *T* and determine an upper bound for *T*.

2. Nonblow-up case

We assume that ρ is a positive C^1 function which satisfies

$$
\rho(s) + 2s\rho'(s) \ge 0, \quad s > 0,\tag{2.1}
$$

so that $\text{div}(\rho(|\nabla u|^2)\nabla u)$ is elliptic. We claim that ρ and f satisfy the conditions

$$
0 < f(s) \leq a_1 + a_2 s^p, \qquad \rho(s) \geq b_1 + b_2 s^q, \quad s > 0,
$$
\n
$$
(2.2)
$$

where $1 \leq p \leq \frac{n+2}{n-2}$ and a_1, a_2, b_1, b_2 are positive constants (although $a_1 = 0$ is allowable). In addition, we assume that u_0 satisfies the compatibility condition $u_0(x) = 0$ on $\partial\Omega$. Since the initial data $u_0(x)$ is nonnegative, we have by the maximum principles [\[16\]](#page--1-15) that the solution is nonnegative in its time interval of existence. Hereafter, for simplicity, we set $\nu = 1$.

We start with the following local existence theorem for Eq. (1.1) which can be obtained by Faedo–Galerkin methods.

Theorem 2.1. Assume [\(2.1\)](#page-1-2) and [\(2.2\)](#page-1-3) hold. Then for any $u_0 \in H_0^1(\Omega)$, there exists a $T > 0$ for which *problem* [\(1.1\)](#page-0-1) *has a unique local solution*

$$
u \in L^{\infty}([0,T), H_0^1(\Omega)), \qquad u_t \in L^2([0,T), H_0^1(\Omega)),
$$

Download English Version:

<https://daneshyari.com/en/article/1707583>

Download Persian Version:

<https://daneshyari.com/article/1707583>

[Daneshyari.com](https://daneshyari.com)