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a b s t r a c t

We obtain a new upper estimate for the Green’s function associated with a higher
order fractional boundary value problem. As an application of this result, criteria
for the existence of positive solutions of the problem are then established.
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1. Introduction

In 2010, Goodrich [1] studied the boundary value problem (BVP, for short) consisting of the equation

−Dν0+u(t) = g(t, u), t ∈ (0, 1), (1.1)

and the boundary conditions

u(j)(0) = 0, j = 0, . . . , n− 2, [Dα0+u(t)]t=1 = 0, (1.2)

where n ≥ 3, n− 1 < ν ≤ n, 1 ≤ α ≤ n− 2, g : [0, 1]× [0,∞)→ R is a continuous function, and Dβ0+ is the
Riemann–Liouville fractional derivative of order β, i.e.,

Dβ0+y(t) = 1
Γ (k − β)

dk

dtk

 t
0

y(s)
(t− s)β+1−k ds, k = [β] + 1.

By a positive solution of BVP (1.1), (1.2), we mean a function u : [0, 1]→ [0,∞) such that u(t) satisfies (1.1)
and (1.2) and u(t) > 0 for t ∈ (0, 1]. In [1], the author first obtained some properties of the Green’s function
associated with the problem. Then, applying these properties and the well known Krasnosel’skii fixed point
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theorem in cones, he derived sufficient conditions for the existence of at least one positive solution of the
problem.

Boundary value problems for fractional differential equations have attracted a great deal of attention
in the last ten years. As a small sampling of recent results, we refer the reader to the papers of Agarwal,
O’Regan, and Stanek [2], Ahmad and Sivasundaram [3], Bai and Lü [4], El-Shahed and Nieto [5], and Wei,
Dong, and Che [6]. Basic properties of the fractional calculus and it applications can be found in Kilbas,
Srivastava, and Trujillo [7] and Podlubny [8].

As presented in [1], the Green’s function for our problem is given by

G(t, s) = 1
Γ (ν)


tν−1(1− s)ν−α−1 − (t− s)ν−1, 0 ≤ s ≤ t ≤ 1,
tν−1(1− s)ν−α−1, 0 ≤ t ≤ s ≤ 1.

(1.3)

We observe that

G(1, s) = 1
Γ (ν) ((1− s)ν−α−1 − (1− s)ν−1).

Lemmas 1.1 and 1.2 give some important properties of G(t, s). Parts (a)–(c) of Lemma 1.1 are taken
from [1, Theorem 3.2] and part (d) of Lemma 1.1 is proved in [9, Lemma 3.2]. Lemma 1.2 is taken from [1,
Theorem 3.1].

Lemma 1.1. G(t, s) has the following properties:

(a) G(t, s) is a continuous function on [0, 1]× [0, 1];
(b) G(t, s) ≥ 0 for t, s ∈ [0, 1];
(c) maxt∈[0,1]G(t, s) = G(1, s) for s ∈ [0, 1];
(d) tν−1G(1, s) ≤ G(t, s) ≤ 1

Γ(ν) t
ν−1(1− s)ν−α−1 for t, s ∈ [0, 1].

Lemma 1.2. Let l ∈ C[0, 1]. Then u(t) is a solution of the BVP consisting of the equation

−Dν0+u(t) = l(t), t ∈ (0, 1), (1.4)

and BC (1.2) if and only if

u(t) =
 1

0
G(t, s)l(s)ds. (1.5)

In the next section, we will obtain some new sharper upper estimates for G than the ones given in [1]
or [9]. In Section 3, we apply our new found estimate to obtain criteria for the existence of a positive solution
to problem (1.1), (1.2).

2. A new upper estimate for the Green’s function

Let

b(t) := t
ν−2((ν − 1)(1− t) + αt)

α
.

The function b(t) will be used to give our new upper estimate for the Green’s function (1.3). The following
lemmas provide some useful estimates that will be used in what follows.

Lemma 2.1. We have

b(t) ≥ tν−1 for 0 ≤ t ≤ 1.
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