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In this paper, by using the technique of the differential inequality, sufficient condi-
tions are obtained for the forced oscillation of certain fractional partial differential
equations. The main results are illustrated by some examples.
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1. Introduction

It is well known that fractional differential equations are generalizations of classical differential equations
to an arbitrary (non-integer) order. The many important mathematical models are described by differential
equations containing fractional order derivatives. In recent years, the theory of fractional differential equa-
tions and their applications have been investigated extensively. We refer the reader to the literatures [1–4].
At the same time, some results on the oscillatory behavior of solutions of fractional ordinary differential
equations were established. For example, see [5–11] and the references therein. However, to the best of
author’s knowledge very little is known regarding the oscillatory behavior of fractional partial differential
equations up to now, we refer to [12–14].

Our aim in this paper is to study the forced oscillation of fractional partial differential equations of the
form

Dα+,tu(x, t) = a(t)∆u(x, t)−m(x, t, u(x, t)) + f(x, t), (x, t) ∈ Ω ×R+ ≡ G, (1)
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where Ω is a bounded domain in Rn with a piecewise smooth boundary ∂Ω , R+ = [0,∞), α ∈ (0, 1) is a
constant, Dα+,tu(x, t) is the Riemann–Liouville fractional derivative of order α of u with respect to t, and
∆u(x, t) =

n
r=1

∂2u(x,t)
∂x2r

.

We assume throughout this paper that
(A1) a ∈ C(R+; (0,∞));
(A2) m ∈ C(G×R;R), and

m(x, t, ξ)

≥ 0, if ξ ∈ (0,∞),
≤ 0, if ξ ∈ (−∞, 0);

(A3) f ∈ C(G;R).
Consider the following boundary condition:

∂u(x, t)
∂N

= ψ(x, t), (x, t) ∈ ∂Ω ×R+, (2)

where N is the unit exterior normal vector to ∂Ω and ψ(x, t) is a continuous function on ∂Ω ×R+.

By a solution of the problem (1), (2), we mean a function u(x, t) which satisfies (1) on G and the boundary
condition (2).

A solution u(x, t) of the problem (1), (2) is said to be oscillatory in G if it is neither eventually positive
nor eventually negative, otherwise it is nonoscillatory.

Definition 1.1. The Riemann–Liouville fractional partial derivative of order 0 < α < 1 with respect to t of
a function u(x, t) is given by

Dα+,tu(x, t) := ∂

∂t

1
Γ (1− α)

 t
0

(t− ν)−αu(x, ν)dν (3)

provided the right hand side is pointwise defined on R+, where Γ is the gamma function.

Definition 1.2. The Riemann–Liouville fractional integral of order α > 0 of a function y : R+ → R on the
half-axis R+ is given by

Iα+y(t) := 1
Γ (α)

 t
0

(t− ν)α−1y(ν)dν for t > 0 (4)

provided the right hand side is pointwise defined on R+.

Definition 1.3. The Riemann–Liouville fractional derivative of order α > 0 of a function y : R+ → R on the
half-axis R+ is given by

Dα+y(t) := d⌈α⌉

dt⌈α⌉


I
⌈α⌉−α
+ y


(t)

= 1
Γ (⌈α⌉ − α)

d⌈α⌉

dt⌈α⌉

 t
0

(t− ν)⌈α⌉−α−1y(ν)dν for t > 0 (5)

provided the right hand side is pointwise defined on R+, where ⌈α⌉ is the ceiling function of α.

Lemma 1.1 ([13]). Let

E(t) =:
 t

0
(t− v)−αy(v)dv for α ∈ (0, 1) and t > 0. (6)

Then E′(t) = Γ (1− α)Dα+y(t).
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