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In this paper, we obtain a differential Harnack estimate for a semilinear parabolic
equation on hyperbolic space. As applications of this estimate, we prove a blow-
up theorem for this equation and integrate along space–time to derive a classical
Harnack inequality.
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1. Introduction

In this paper, we study the following Cauchy problem in the n-dimensional hyperbolic space Hn:
ft = ∆Hf + eµtfp, in Hn × (0,+∞),
f(x, 0) = f0, in Hn,

(1.1)

where p > 1, µ > 0.
In [1], the hyperbolic space Hn is equivalent to the unit ball B1 ⊂ Rn endowed with the Poincaré metric

ds2 = 4
(1− |x|2)2 dx

2.

The geodesic distance between any x ∈ Hn and 0 is given by

d(x, 0) :=
 |x|

0

2
1− s2 ds = ln

1 + |x|
1− |x|


.
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Set ρ(x) = d(x, 0). The volume element of Hn is

dµ = 2n

(1− |x|2)n dx1 · · · dxn = (sinh ρ)n−1dρdθ,

dx1 · · · dxn = dx being the Lebesgue measure in Rn and (ρ, θ) being polar geodesic coordinates in Hn \ {0}.
Then the Laplace–Beltrami operator is given by the following equalities

∆H = 1
4(1− |x|2)2

n
i=1

∂2

∂x2
i

+ n− 2
2 (1− |x|2)

n
i=1

xi
∂

∂xi

and

∆H = ∂2

∂ρ2 + (n− 1) coth ρ ∂
∂ρ

+ 1
(sinh ρ)2 ∆θ,

∆θ being the Laplace–Beltrami operator on the n− 1-dimensional sphere of Rn.
P. Li and S.-T. Yau in [2] were first pioneers to the study of differential Harnack inequalities which

was brought to general parabolic geometric flows by R. Hamilton (see [3]). The importance of parabolic
Harnack inequalities is well introduced in [4–7]. Using these inequalities one can derive ancient solutions,
bounds on gradient Ricci solitons, Hölder continuity. A more sophisticated application of differential Harnack
inequalities in geometry can be found in [8]. Harnack inequalities have been applied to the study of log-
Sobolev constants (see [9–11]).

One of the main results is to suggest that the method developed in geometric flows can be used for
blow-up of solutions for nonlinear parabolic equations on hyperbolic space. C. Bandle et al. [12] obtained
that if 1 < p < 1 + µ

λ0
(λ0 = (n−1)2

4 the infimum of the L2-spectrum of −∆H), then every nontrivial solution
of problem (1.1) blows up in finite time.

For the convenience, ∆ and ∇ in the paper are the operators of the hyperbolic space. Without loss of
generality, we may assume that the sectional curvature of Hn is −1. Let f(x, t) be a positive smooth solution
to (1.1) and u := log f . The main object of our study is the following Harnack quantity

H ≡ α∆u+ β|∇u|2 + ceµt+(p−1)u + ψ(t) + φ(x), (1.2)

where α, β, c ∈ R, α > β and ψ, φ will be chosen suitably later.
We will derive our differential Harnack estimate.

Theorem 1.1. Let f(x, t) be a positive classical solution to (1.1), and u(x, t) := log f . If α, β and c satisfy

α ≥ 1, α > β > 0, α(p− 1) + 2β
p

≥ c ≥ (p− 1)nα2

4(α− β) > 0,

then we have

H ≡ α∆u+ β|∇u|2 + ceµt+(p−1)u + n

2(α− β)(1− e−t) + n(n− 1)α2

2β ≥ 0

for all t.

The paper is organized as follows. In Section 2 we prove Theorem 1.1 which describes differential Harnack
estimate. There are applications of Theorem 1.1 in Section 3.

2. Harnack estimate

In this section, we shall first obtain our differential Harnack inequality, relying on the parabolic maximum
principle.
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