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1. Introduction

The singular ordinary differential equations arise in the fields of gas dynamics, Newtonian fluid mechanics,
the theory of boundary layer and so on, the theory of singular boundary value problems has become an
important area of investigation in recent years (see [1-4] and the references therein). Consider the nth-order
(n > 3) p-Laplacian singular super-linear boundary value problems

O+ S50, 40, a0 IO =0, te 0 )
o) 0)=0, i=0,1 n—2, x(”_Q)(l) =0, .

where ¢, (t) = [t|P~2t,p > 2, n > 3 is an integer, and f satisfies the following hypothesis.
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(H): f € C((0,1) x [0,00)""1,]0,00)), and there exist constants A\, j1;, (0 < X\; < pg,i = 0,1,2,...,n —
30< A o< o <p— 1,2;:02 A; > p— 1) such that for ¢ € (0,1),z; € [0, 00)

Cuif(t7I07xla"'axia"'7xn—2) S f(t,l'o,l'l,...,CSCi,...,I’n_g)

< f(t @, @1,y Ty Tpn), fO0<c<1,i=0,1,2,...,n—2. (1.2)

Remark 1.1. (1.2) is equivalent to the following (1.3)

c’\f'f(t,mo,xl,...,xi,...,xn,z) < ft, 2o, X1y ey CTly ey T—2)

S Cuif(t,l’(),l’l,...,.’Ei,...,l‘n_g), lfCZ 1, Z‘:(),la-“an*?' (13)

Typical functions that satisfy the above super-linear hypothesis are those taking the form
flt, o, 21, ,xp_2) = Zfilpi(t)xéioxfil ...xfj’_"{g; here p;(t) € C(0,1),p;(t) > 0 on (0,1),0 < i, k =
0,1,...,n=3,0< 4l o <p—1, 57 00 >p—1,7=1,2,...,N.

By singularity we mean that the function f(¢,zo,z1,...,2i,...,Zn—2) in (1.1) is allowed to be un-
bounded at x;,i = 0,1,...,n —2,t = 0 and or t = 1. Note Sp=% = {z € C" 20, 1], pp(z("=2)) €
Cl0,1]nC?(0,1)}, S~ = {x € C" 0, 1], op(x=2)) € C*0,1] N C?(0,1)}. A function x(t) € Sp2 s
called a S}~2 (positive) solution of (1.1) if it satisfies (1.1) (@ (t) > 0,i=0,1,...,n—2, for t € (0,1)). A
function z(t) € Sy~' is called a SJ~! (positive) solution of (1.1) if =1 (0%) and (=Y (17) both exist,
and it satisfies (1.1) (2 (t) > 0,i =0,1,...,n— 2, for t € (0,1)).

Using the Krasnosel’skii, Leggett—Williams fixed-point theorems, the authors in papers [5-11] have given
some sufficient conditions for the existence of positive solution and multiple positive solutions for a class of
nth-order m-point singular boundary value problems. By constructing lower and upper solutions and with
the comparison theorem, Z.L. Wei in paper [12] has given a necessary and sufficient condition for the existence
of Sg_l positive solutions of nth-order p-Laplacian singular sub-linear boundary value problems (1.1).

Now, in this paper, we shall give some necessary and sufficient conditions for the existence of 53_2 positive
solutions as well as Sg_l positive solutions of the singular super-linear boundary value problems (1.1) by
using the fixed point theorems on cones, which are different from that of [5-12].

2. Some lemmas
To obtain the main results, we need the following lemmas.

Lemma 2.1. Suppose that (H) holds. Let x(t) be a Sp~' positive solution of (1.1). Then there are constants
I and 17,0 < 1 < IV | such that
21— )V <D () < 1P (1 - )Y, e o], (21)
[gn=2=t1/01) < g4y < [(Dyn=21/=1) - p 2 [0,1], i=0,1,2,...,n— 3. (2.2)

Proof. For convenience, we note (Fz)(t) = f(t,z(t),z'(t),...,zO(t),...,2"2)(t)). Assume that z(t) is a
Sp=1 positive solution of (1.1). Then both ©0p[r™2)(0) and ¢, [z~ (1) exist. By integration of (1.1),
we have fol(Fx)dt = (pp[x(nﬂ)]/(o) - (pp[gc(”*m]’(l) < 00. And z(t) can be written as

1 1/(p—1)
s = ([ meoEoeas) L el (23)

t n—i—3
() = Mx(”_g)(s)ds i=0,1,2,...,n—3, t €[0,1] (2.4)
0 (n _ ’L . 3)' b ) ) y*rtt ) b ) .
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