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This paper investigates the existence of positive solutions for nth-order (n ≥ 3) p-
Laplacian singular super-linear boundary value problems. A necessary and sufficient
condition for the existence of Sn−2

p positive solutions as well as Sn−1
p positive

solutions is given by means of the fixed point theorems on cones.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The singular ordinary differential equations arise in the fields of gas dynamics, Newtonian fluid mechanics,
the theory of boundary layer and so on, the theory of singular boundary value problems has become an
important area of investigation in recent years (see [1–4] and the references therein). Consider the nth-order
(n ≥ 3) p-Laplacian singular super-linear boundary value problems

ϕp(x(n−2))′′(t) + f(t, x(t), x′(t), . . . , x(i)(t), . . . , x(n−2)(t)) = 0, t ∈ (0, 1),
x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2, x(n−2)(1) = 0,

(1.1)

where ϕp(t) = |t|p−2t, p ≥ 2, n ≥ 3 is an integer, and f satisfies the following hypothesis.
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(H): f ∈ C((0, 1) × [0,∞)n−1, [0,∞)), and there exist constants λi, µi, (0 < λi ≤ µi, i = 0, 1, 2, . . . , n −
3, 0 ≤ λn−2 ≤ µn−2 < p− 1,

n−2
i=0 λi > p− 1) such that for t ∈ (0, 1), xi ∈ [0,∞)

cµif(t, x0, x1, . . . , xi, . . . , xn−2) ≤ f(t, x0, x1, . . . , cxi, . . . , xn−2)
≤ cλif(t, x0, x1, . . . , xi, . . . , xn−2), if 0 < c ≤ 1, i = 0, 1, 2, . . . , n− 2. (1.2)

Remark 1.1. (1.2) is equivalent to the following (1.3)

cλif(t, x0, x1, . . . , xi, . . . , xn−2) ≤ f(t, x0, x1, . . . , cxi, . . . , xn−2)
≤ cµif(t, x0, x1, . . . , xi, . . . , xn−2), if c ≥ 1, i = 0, 1, . . . , n− 2. (1.3)

Typical functions that satisfy the above super-linear hypothesis are those taking the form
f(t, x0, x1, . . . , xn−2) =

N
i=1 pi(t)x

ℓi0
0 x

ℓi1
1 . . . x

ℓi,n−2
n−2 ; here pj(t) ∈ C(0, 1), pj(t) > 0 on (0, 1), 0 < ℓjk, k =

0, 1, . . . , n− 3, 0 ≤ ℓj,n−2 < p− 1,
n−2
k=0 ℓjk > p− 1, j = 1, 2, . . . , N .

By singularity we mean that the function f(t, x0, x1, . . . , xi, . . . , xn−2) in (1.1) is allowed to be un-
bounded at xi, i = 0, 1, . . . , n − 2, t = 0 and or t = 1. Note Sn−2

p = {x ∈ Cn−2[0, 1], ϕp(x(n−2)) ∈
C[0, 1] ∩ C2(0, 1)}, Sn−1

p = {x ∈ Cn−1[0, 1], ϕp(x(n−2)) ∈ C1[0, 1] ∩ C2(0, 1)}. A function x(t) ∈ Sn−2
p is

called a Sn−2
p (positive) solution of (1.1) if it satisfies (1.1) (x(i)(t) > 0, i = 0, 1, . . . , n− 2, for t ∈ (0, 1)). A

function x(t) ∈ Sn−1
p is called a Sn−1

p (positive) solution of (1.1) if x(n−1)(0+) and x(n−1)(1−) both exist,
and it satisfies (1.1) (x(i)(t) > 0, i = 0, 1, . . . , n− 2, for t ∈ (0, 1)).

Using the Krasnosel’skii, Leggett–Williams fixed-point theorems, the authors in papers [5–11] have given
some sufficient conditions for the existence of positive solution and multiple positive solutions for a class of
nth-order m-point singular boundary value problems. By constructing lower and upper solutions and with
the comparison theorem, Z.L. Wei in paper [12] has given a necessary and sufficient condition for the existence
of Sn−1

p positive solutions of nth-order p-Laplacian singular sub-linear boundary value problems (1.1).
Now, in this paper, we shall give some necessary and sufficient conditions for the existence of Sn−2

p positive
solutions as well as Sn−1

p positive solutions of the singular super-linear boundary value problems (1.1) by
using the fixed point theorems on cones, which are different from that of [5–12].

2. Some lemmas

To obtain the main results, we need the following lemmas.

Lemma 2.1. Suppose that (H) holds. Let x(t) be a Sn−1
p positive solution of (1.1). Then there are constants

I
(i)
1 and I(i)2 , 0 < I(i)1 ≤ I

(i)
2 , such that

I
(n−2)
1 (t(1− t))1/(p−1) ≤ x(n−2)(t) ≤ I(n−2)

2 (t(1− t))1/(p−1), t ∈ [0, 1], (2.1)

I
(i)
1 t
n−2−i+1/(p−1) ≤ x(i)(t) ≤ I(i)2 t

n−2−i+1/(p−1), t ∈ [0, 1], i = 0, 1, 2, . . . , n− 3. (2.2)

Proof. For convenience, we note (Fx)(t) = f(t, x(t), x′(t), . . . , x(i)(t), . . . , x(n−2)(t)). Assume that x(t) is a
Sn−1
p positive solution of (1.1). Then both ϕp[x(n−2)]′(0) and ϕp[x(n−2)]′(1) exist. By integration of (1.1),

we have
 1
0 (Fx)dt = ϕp[x(n−2)]′(0)− ϕp[x(n−2)]′(1) <∞. And x(t) can be written as

x(n−2)(t) =
 1

0
H(t, s)(Fx)(s)ds

1/(p−1)

, t ∈ [0, 1], (2.3)

x(i)(t) =
 t

0

(t− s)(n−i−3)

(n− i− 3)! x
(n−2)(s)ds, i = 0, 1, 2, . . . , n− 3, t ∈ [0, 1], (2.4)
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