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A proof is given of the global existence and uniqueness of a weak solution to
Navier–Stokes equations in unbounded exterior domains.
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1. Introduction

Let D ⊂ R3 be a bounded domain with a connected C2-smooth boundary S, and D′ := R3 \ D be the
unbounded exterior domain.

Consider the Navier–Stokes equations:

ut + (u,∇)u = −∇p+ ν∆u+ f, x ∈ D′, t ≥ 0, (1)
∇ · u = 0, (2)
u|S = 0, u|t=0 = u0(x). (3)

Here f is a given vector-function, p is the pressure, u = u(x, t) is the velocity vector-function, ν = const > 0
is the viscosity coefficient, u0 is the given initial velocity, ut := ∂tu, (u,∇)u := ua∂au, ∂au := ∂u

∂xa
:= u;a, and

∇ · u0 := ua;a = 0. Over the repeated indices a and b summation is understood, 1 ≤ a, b ≤ 3. All functions
are assumed real-valued.

We assume that u ∈W ,

W := {u|L2(0, T ;H1
0 (D′)) ∩ L∞(0, T ;L2(D′)) ∩ ut ∈ L2(D′ × [0, T ]);∇ · u = 0},

where T > 0 is arbitrary.
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Let (u, v) :=

D′
uavadx denote the inner product in L2(D′), ∥u∥ := (u, u)1/2. By uja the a-th component

of the vector-function uj is denoted, and uja;b is the derivative ∂uja∂xb . Eq. (2) can be written as ua;a = 0 in
these notations. We denote ∂u

2

∂xa
:= (u2);a, u2 := ubub. By c > 0 various estimation constants are denoted.

Let us define a weak solution to problem (1)–(3) as an element of W which satisfies the identity:

(ut, v) + (uaub;a, vb) + ν(∇u,∇v) = (f, v), ∀v ∈W. (4)

Here we took into account that −(∆u, v) = (∇u,∇v) and (∇p, v) = −(p, va;a) = 0 if v ∈ H1
0 (D′) and

∇ · v = 0. Eq. (4) is equivalent to the integrated equation: t
0

[(us, v) + (uaub;a, vb) + ν(∇u,∇v)]ds =
 t

0
(f, v)ds, ∀v ∈W. (∗)

Eq. (4) implies Eq. (∗), and differentiating Eq. (∗) with respect to t one gets Eq. (4) for almost all t ≥ 0.
The aim of this paper is to prove the global existence and uniqueness of the weak solution to the Navier–

Stokes boundary problem, that is, solution in W existing for all t ≥ 0. Let us assume that

sup
t≥0

 t
0
∥f∥ds ≤ c, (u0, u0) ≤ c. (A)

Theorem 1. If assumptions (A) hold and u0 ∈ H1
0 (D) satisfies Eq. (2), then there exists for all t > 0 a

solution u ∈W to (4) and this solution is unique in W provided that ∥∇u∥4 ∈ L1
loc(0,∞).

In Section 2 we prove Theorem 1. There is a large literature on Navier–Stokes equations, of which we men-
tion only [1,2]. The global existence and uniqueness of the solution to Navier–Stokes boundary problems has
not yet been proved without additional assumptions. Our additional assumption is ∥∇u∥4 ∈ L1

loc(0,∞). The
history of this problem see, for example, in [1]. In [2] the uniqueness of the global solution to Navier–Stokes
equations is established under the assumption ∥u∥8L4(D′) ∈ L

1
loc(0,∞).

2. Proof of Theorem 1

Proof of Theorem 1. The steps of the proof are: (a) derivation of a priori estimates; (b) proof of the existence
of the solution in W ; (c) proof of the uniqueness of the solution in W .

(a) Derivation of a priori estimates

Take v = u in (4). Then

(uaub;a, ub) = −(uaub, ub;a) = −1
2(ua, (u2);a) = 1

2(ua;a, u2) = 0,

where the equation ua;a = 0 was used. Thus, Eq. (4) with v = u implies

1
2∂t(u, u) + ν(∇u,∇u) = (f, u) ≤ ∥f∥∥u∥. (5)

We will use the known inequality ∥u∥∥f∥ ≤ ϵ∥u∥2 + 1
4ϵ∥f∥

2 with a small ϵ > 0, and denote by c > 0 various
estimation constants.

One gets from (5) the following estimate:

(u(t), u(t)) + 2ν
 t

0
(∇u,∇u)ds ≤ (u0, u0) + 2

 t
0
∥f∥ds sup

s∈[0,t]
∥u(s)∥ ≤ c+ c sup

s∈[0,t]
∥u(s)∥. (6)

Recall that assumptions (A) hold. Denote sups∈[0,t] ∥u(s)∥ := b(t). Then inequality (6) implies

b2(t) ≤ c+ cb(t), c = const > 0. (7)
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