Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight

Inbo Sim ${ }^{\text {a }}$, Satoshi Tanaka ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, University of Ulsan, Ulsan 680-749, Republic of Korea
${ }^{\text {b }}$ Department of Applied Mathematics, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan

A R T I C L E I N F O

Article history:

Received 3 March 2015
Received in revised form 15 April 2015
Accepted 15 April 2015
Available online 27 April 2015
Keywords:
p-Laplacian
Three positive solutions
Bifurcation
A-priori bound
Boundary value problem

Abstract

We show that one-dimensional p-Laplacian with a sign-changing weight which is subject to Dirichlet boundary condition has three positive solutions suggesting suitable conditions on the weight function and nonlinearity. Proofs are mainly based on the directions of a bifurcation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main result

In this paper, we are concerned with the existence of three positive solutions for the following problem

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+\lambda h(x) f(u(x))=0, \quad x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

where $\varphi_{p}(s)=|s|^{p-2} s, p>1, \lambda>0$ is a parameter, $f \in C[0, \infty), f(0)=0, f(s)>0$ for all $s>0$ and $h \in C[0,1]$ will be specified later.

The existence of three positive solutions for $\left(P_{\lambda}\right)$ was mainly studied by three positive solutions theorem by Amann [1] which is established on the method of sub-supersolution. For example, for one-dimensional p-Laplacian with a weight function, Lee-Kim-Lee [2] showed the existence of three positive solutions by a variant of Amann's theorem. It is worth noting that even they established the basic three positive solutions theorem for a sign-changing weight case, they could only apply it for a positive weight case. This means that

[^0]it is hard to construct sub-supersolutions in the case of a sign-changing weight. Variational approach [3,4] can also be applied to get three solutions, however, this method does not guarantee positivity or nontriviality of all solutions at most cases. Recently, there is a result about Hénon type equation by the second author [5];
\[

\left\{$$
\begin{array}{l}
u^{\prime \prime}(x)+|x|^{l} u^{p}(x)=0, \quad x \in(-1,1), \tag{H}\\
u(-1)=u(1)=0
\end{array}
$$\right.
\]

where $l \geq 0$ and $p>1$. It is shown the existence of one positive even solution and two positive non-even solutions when $l(p-1) \geq 4$ for (H), by using Morse index argument and comparing its linearized problem. However, it seems hard to follow this argument directly for p-Laplacian since p-Laplacian's linearized problem contains a degeneracy and we cannot apply comparison type theorems.

Motivated on these studies, we shall allow a weight to be sign-changing and use a different method, so-called a bifurcation. Throughout the paper, we assume that
(H1) there exist $x_{1}, x_{2} \in[0,1]$ such that $x_{1}<x_{2}, h(x)>0$ on $\left(x_{1}, x_{2}\right)$ and $h(x) \leq 0$ on $[0,1] \backslash\left[x_{1}, x_{2}\right]$.
Condition (H1) allows the cases: $h(x)>0$ on $[0, a)$ and $h(x)<0$ on ($a, 1]$ for some $a \in(0,1)$ or $h(x)>0$ on (a, b) and $h(x)<0$ on $[0, a) \cup(b, 1]$ for some $a, b \in(0,1)$. Let μ_{1} be the first eigenvalue $[6,7]$ of the following problem:

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(u^{\prime}(x)\right)\right)^{\prime}+\mu h(x) \varphi_{p}(u(x))=0, \quad x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

Then the first eigenvalue μ_{1} is the minimum of the Rayleigh quotient, that is,

$$
\mu_{1}=\inf \left\{\frac{\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{p} d x}{\int_{0}^{1} h(x)|\phi(x)|^{p} d x}: \phi \in W_{0}^{1, p}(0,1), \int_{0}^{1} h(x)|\phi(x)|^{p} d x>0\right\}
$$

Furthermore, we assume that
(F1) there exist $\alpha>0, f_{0}>0$ and $f_{1}>0$ such that $\lim _{s \rightarrow 0^{+}} \frac{f(s)-f_{0} s^{p-1}}{s^{p-1+\alpha}}=-f_{1}$;
(F2) $f_{\infty}:=\lim _{s \rightarrow \infty} f(s) / s^{p-1}=0$;
(F3) there exists $s_{0}>0$ such that

$$
\min _{s \in\left[s_{0}, 2 s_{0}\right]} \frac{f(s)}{s^{p-1}} \geq \frac{f_{0}(p-1)}{\mu_{1} h_{0}}\left(\frac{\pi_{p}}{x_{2}-x_{1}}\right)^{p},
$$

where

$$
\pi_{p}:=\frac{2 \pi}{p \sin (\pi / p)}, \quad h_{0}=\min _{x \in\left[\frac{3 x_{1}+x_{2}}{4}, \frac{x_{1}+3 x_{2}}{4}\right]} h(x) .
$$

For π_{p}, we also refer the reader to $[8,9]$ and [10]. It is easy to find that if (F1) holds, then

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{f(s)}{s^{p-1}}=f_{0} \tag{1.1}
\end{equation*}
$$

Moreover, if (1.1) and (F2) hold, then there exists $f^{*}>0$ such that

$$
\begin{equation*}
f(s) \leq f^{*} s^{p-1}, \quad s \geq 0 \tag{1.2}
\end{equation*}
$$

https://daneshyari.com/en/article/1707646

Download Persian Version:
https://daneshyari.com/article/1707646

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ibsim@ulsan.ac.kr (I. Sim), tanaka@xmath.ous.ac.jp (S. Tanaka).

